Speed and velocity are both measured using the same units. The SI unit of distance and displacement is the meter. The SI unit of time is the second. The SI unit of speed and velocity is the ratio of two — the meter per second.
Answer:
W_net = μ 5.58, μ = 0.1 W_net = 0.558 J
Explanation:
The work is defined by the related
W = F. d = F d cos θ
where bold indicates vectors.
In the case, the work of the friction force on a circular surface is requested.
The expression for the friction force is
fr = μ N
the friction force opposes the movement, therefore the angle is 180º and the cos 180 = -1
W = - fr d
the path traveled half the length of the circle
L = 2 π R
d = L / 2
d = π R
we substitute
W = - μ N d
Total work is initial to
W_neto = - μ π R (N_b - N_a)
let's calculate
W_net = - μ π 0.550 (0.670 - 3.90)
W_net = μ 5.58
for the complete calculation it is necessary to know the friction coefficient, if we assume that μ = 0.1
W_net = 0.1 5.58
W_net = 0.558 J
The magnitude of static friction is
<em>f</em> = <em>mv</em> ²/<em>r</em>
(i.e. the net force acting on the car parallel to the road points toward the center of the curve)
while the net vertical force must be
∑ <em>F</em> = <em>n</em> - <em>mg</em> = 0
because the car is otherwise in equilibrium. Then
==> <em>n</em> = <em>mg</em>
==> <em>f</em> = <em>µn</em> = <em>µmg</em> = <em>mv</em> ²/<em>r</em>
==> <em>µ</em> = <em>v</em> ²/(<em>rg</em>)
We have
<em>v</em> = 101 km/h ≈ 28.1 m/s
<em>r</em> = 110 m
<em>g</em> = 9.80 m/s²
so that
<em>µ</em> = (28.1 m/s)² / ((110 m) <em>g</em>) ≈ 0.730
A pedestal rock, also known as a rock pedestal or mushroom rock, is not a true balancing rock, but is a single continuous rock form with a very small base leading up to a much larger crown. Some of these formations are called balancing rocks because of their appearance. The undercut base was attributed for many years to simple wind abrasion, but is now believed to result from a combination of wind and enhanced chemical weathering at the base where moisture would be retained longest. Some pedestal rocks sitting on taller spire formations are known as hoodoos. I think this is the answer if I’m wrong I’m very sorry
Answer:
on edge the answer is B Spectrometer
Explanation: