Answer:
cnbzdbhvhndjcn bvhdbvjsdhvjsbdjcbhkavwhe4w7334856743534685347856784687367856732346356675ygafjdbvc
Explanation:
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzman law that is responsible for calculating radioactive energy.
Mathematically this expression can be given as

Where
A = Surface area of the Object
Stefan-Boltzmann constant
e = Emissivity
T = Temperature (Kelvin)
Our values are given as





Replacing at our equation and solving to find the temperature 1 we have,




Therefore the the temperature of the coldest room in which this person could stand and not experience a drop in body temperature is 12°C
The magnitude of the air drag is 784 N
Explanation:
An object falling down reaches the terminal velocity when the magnitude of the air drag acting on it becomes equal to the weight of the object. Mathematically, this condition can be written as:

where
is the magnitude of the air drag
m is the mass of the object
g is the acceleration of gravity
In this problem, we have
m = 80 kg is the mass of the airman
is the acceleration of gravity
Substituting into the formula, we find:

Learn more about forces here:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:
I can't see the attachment it's too blury I can see bout two words and thats it
Explanation:
Think i got an eye infection or bad eye sight
Answer:
kinetic and potential energy). The opposite is true when you remove thermal energy: Particles move slower (less kinetic energy). Particles get closer together (less potential energy)