Its really hurts
Explanation:
Charge A and charge B are 2.2 m apart. Charge A is 1.0 C, and charge B is
2.0 C. Charge C, which is 2.0 C, is located between them and is in
electrostatic equilibrium. How far from charge A is charge C?
Answer:
2.083 V.
Explanation:
Stopping potential is the potential that is required to stop the current to zero . This potential is applied externally to oppose the potential created by the photoelectric effect . It gives the measure the photoelectric potential being generated .
Here current drops to 25 μA to 19 μA by a potential of 500mV
Change in current
= 25 - 19 = 6 μA
Voltage requirement for unit reduction in current
= 500 / 6 μA
To reduce current 0f 25 μA
requirement of V = (500 / 6 ) x 25 = 2083.33 mV = 2.083 V.
Answer:
182.28 W
Explanation:
Here ,
m = 7.30 Kg
distance , d= 28.0 m
time , t = 11.0 s
average power supplied = change in potential energy/time
average power supplied = m×g×d/time
average power supplied = 7.30×9.81×28/11
average power supplied = 182.28 W
the average power supplied is 182.28 W
A material that has high resistance to the flow of electric current is called an electric resistor
Dispersion occurs due to the different degrees of refraction experienced by different colours of light. Light of different colours may travel with the same speed in a vacuum, but they travel at different speeds in some refracting medium. The speed of violet light is relatively lower than that of red light.