1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kumpel [21]
3 years ago
6

A person's body is producing energy internally due to metabolic processes. If the body loses more energy than metabolic processe

s are generating, its temperature will drop. If the drop is severe, it can be life-threatening. Suppose that a person is unclothed and energy is being lost via radiation from a body surface area of 1.36 m2, which has a temperature of 34° C and an emissivity of 0.700. Also suppose that metabolic processes are producing energy at a rate of 122 J/s. What is the temperature of the coldest room in which this person could stand and not experience a drop in body temperature
Physics
1 answer:
Allushta [10]3 years ago
8 0

To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzman law that is responsible for calculating radioactive energy.

Mathematically this expression can be given as

P = \sigma Ae\Delta T^4

Where

A = Surface area of the Object

\sigma = Stefan-Boltzmann constant

e = Emissivity

T = Temperature (Kelvin)

Our values are given as

A = 1.36m^2

\Delta T^4 = T_2^4 -T_1^4 = 307^4-T_1^4

\sigma = 5.67*10^{-8} J/(s m^2 K^4)

P = 122J/s

e = 0.7

Replacing at our equation and solving to find the temperature 1 we have,

P = \sigma Ae\Delta T^4

P = \sigma Ae (T_2^4 -T_1^4)

122 = (5.67*10^{-8})(1.36)(0.7)(307^4-T_1^4)

T_1 = 285.272K = 12.122\°C

Therefore the the temperature of the coldest room in which this person could stand and not experience a drop in body temperature is 12°C

You might be interested in
Question 9(Multiple Choice Worth 2 points)
ArbitrLikvidat [17]

Explanation:

O Protons and neutrons grouped in a specific pattern

O Protons and electrons spread around randomly

5 0
4 years ago
A block of mass m1 = 3.5 kg moves with velocity v1 = 6.3 m/s on a frictionless surface. it collides with block of mass m2 = 1.7
maxonik [38]
First, let's find the speed v_i of the two blocks m1 and m2 sticked together after the collision.
We can use the conservation of momentum to solve this part. Initially, block 2 is stationary, so only block 1 has momentum different from zero, and it is:
p_i = m_1 v_1
After the collision, the two blocks stick together and so now they have mass m_1 +m_2 and they are moving with speed v_i:
p_f = (m_1 + m_2)v_i
For conservation of momentum
p_i=p_f
So we can write
m_1 v_1 = (m_1 +m_2)v_i
From which we find
v_i =  \frac{m_1 v_1}{m_1+m_2}= \frac{(3.5 kg)(6.3 m/s)}{3.5 kg+1.7 kg}=4.2 m/s

The two blocks enter the rough path with this velocity, then they are decelerated because of the frictional force \mu (m_1+m_2)g. The work done by the frictional force to stop the two blocks is
\mu (m_1+m_2)g  d
where d is the distance covered by the two blocks before stopping.
The initial kinetic energy of the two blocks together, just before entering the rough path, is
\frac{1}{2} (m_1+m_2)v_i^2
When the two blocks stop, all this kinetic energy is lost, because their velocity becomes zero; for the work-energy theorem, the loss in kinetic energy must be equal to the work done by the frictional force:
\frac{1}{2} (m_1+m_2)v_i^2 =\mu (m_1+m_2)g  d
From which we can find the value of the coefficient of kinetic friction:
\mu =  \frac{v_i^2}{2gd}= \frac{(4.2 m/s)^2}{2(9.81 m/s^2)(1.85 m)}=0.49
3 0
3 years ago
You ride on an elevator that is moving with constant upward acceleration while standing on a bathroom scale. the reading on the
Blababa [14]

The reading on the scale is greater than your actual weight.

4 0
4 years ago
Watt (w) is a drived unit why​
ValentinkaMS [17]

Answer:

because it is from a mathematical combination of SI base units

Explanation:

4 0
3 years ago
What are the units of acceleration?
Marina86 [1]

Acceleration is any change in speed or direction of motion.

The dimension of speed is [length/time],
so a change is [length/time²].

Popular units include [meter/second²] and [feet/second²] .
________________________

Direction almost always boils down to an angle, (which technically
has no dimensions), so a change in direction is  [angle/time] .

Popular units include [radian/second] and [degree/second] .

5 0
3 years ago
Other questions:
  • What is the amount of "stuff in an object?
    11·2 answers
  • Which law describes the speed at which objects travel at different points in their orbits?
    15·1 answer
  • An airplane is flying at a constant velocity through the air. What is the relationship between the magnitudes of the four forces
    12·1 answer
  • A bicycle wheel rotates uniformly through 2.0 revolutions in 4.0 s. what is the frequency of the wheel's rotation?
    9·2 answers
  • What is the correct order for the Lunar eclipse
    15·2 answers
  • Which state is the smartest state?
    6·2 answers
  • Identify the type of particle that would be given off by each of the following nuclear reactions:
    11·2 answers
  • How much power is required to do 180 J of work in 2.4s?​
    13·2 answers
  • Does dropping a magnet down a copper tube produce a current in the tube? explain your answer.
    14·1 answer
  • Using the thermodynamic information in the aleks data tab, calculate the standard reaction free energy of the following chemical
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!