Answer:
Q = 16163.88 Joules
Explanation:
Given the following data;
Initial temperature, T1 = -25°C
Final temperature, T2 = 150°C
Mass = 45.5 g
Specific heat capacity of ice = 2.03 J/g°C
To find the quantity of heat required;
Heat capacity is given by the formula;
Where;
Q represents the heat capacity or quantity of heat.
m represents the mass of an object.
c represents the specific heat capacity of water.
dt represents the change in temperature.
dt = T2 - T1
dt = 150 - (-25)
dt = 150 + 25
dt = 175°C
Substituting into the formula, we have;
Q = 16163.88 Joules
Answer:
Kinetic And Potential Energy Working Together All forms of kinetic energy are the result of a previous state of potential energy. For example, the stored chemical potential energy of a battery converts to electrical kinetic energy to transport electricity to a light bulb, which radiates thermal kinetic energy.
Explanation:
Answer:
If 700 g of water at 90 °C loses 27 kJ of heat, its final temperature is 106.125 °C
Explanation:
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
In this way, between heat and temperature there is a direct proportional relationship (Two magnitudes are directly proportional when there is a constant so that when one of the magnitudes increases, the other also increases; and the same happens when either of the two decreases .). The constant of proportionality depends on the substance that constitutes the body and its mass, and is the product of the specific heat and the mass of the body. So, the equation that allows to calculate heat exchanges is:
Q = c * m * ΔT
Where Q is the heat exchanged by a body of mass m, constituted by a substance of specific heat c and where ΔT is the variation in temperature, ΔT= Tfinal - Tinitial
In this case:
- Q= 27 kJ= 27,000 J (being 1 kJ=1,000 J)

- m=700 g
- ΔT= Tfinal - Tinitial= Tfinal - 90 °C
Replacing:

Solving:


16.125 °C= Tfinal - 90 °C
Tfinal= 16.125 °C + 90 °C
Tfinal= 106.125 °C
<u><em>If 700 g of water at 90 °C loses 27 kJ of heat, its final temperature is 106.125 °C</em></u>
I only identify decomposition