Answer:
specific heat = 0.951 j/g·°C
Explanation:
Heat flow equation => q = m·c·ΔT
q = heat flow = 4817 joules
m = mass in grams = 140 grams Aluminum
c = specific heat = ?
ΔT = Temperature Change in °C = 98.4°C - 62.2°C = 36.2°C
q = m·c·ΔT => c = q/m·ΔT = 4817j/(140g)(36.2°C) = 0.951 j/g·°C
Presumptive tests, also known as preliminary tests or field tests, allow drugs to be quickly classified into a particular chemical group, but do not unequivocally identify the presence of a specific chemical compound.
126 grams of H2O is formed.
Explanation:
Data given:
volume of the gas = 88 Liters
pressure = 720 mm Hg or 0.947 atm
temperature T = 22 Degrees or 295.15 K
R = 0.08021 atm L/mole K
n =?
The formula is used is of ideal gas law to know the number of moles of CH4 undergoing combustion.
PV = nRT
n = 
putting the values in the equation
= 0.947 X 88/ 0.08021 X 295.15
n = 3.5 moles
balanced reaction for combustion of methane
CH4 + O2 ⇒ CO2 + 2H20
1 mole of CH4 undergoes combustion to form 2 moles of water
3.5 moles will give x moles of water
2/1 = x/3.5
x = 7 moles of water (atomic mass of water = 18 gram/mole)
mass = atomic mass x number of moles
mass = 18 x 7
=126 grams of water is formed.
Answer:
Seven
Explanation:
The 3 means that you must multiply everything inside the parentheses by 3.
If you write the formula as AlO₃H₃, it is easier to count the atoms.
A:l 1 atom
O: 3
H: <u>3 atoms</u>
7 atoms
There are seven atoms in one formula unit of Al(OH)₃.