Explanation:
<em>an </em><em>eclipse </em><em>happens </em><em>when </em><em>one </em>
<em>astronomical </em><em>body </em><em>block </em><em>light </em>
<em>from </em><em>or </em><em>to </em><em>another</em><em>,</em><em> </em><em>the </em><em>moon </em><em>moves </em><em>into</em>
<em>the </em><em>shadow </em><em>of </em><em>earth </em><em>cast </em><em>by </em><em>sun</em><em>.</em><em>.</em><em>.</em><em> </em><em>In </em><em>a </em><em>solar </em>
<em>eclipse</em><em>,</em><em> </em><em>the </em><em>moon </em><em>passes </em><em>between </em><em>Earth </em>
<em>and </em><em>the </em><em>sun </em><em>stops </em><em>some </em><em>all </em><em>of </em><em>the </em><em>sun's </em><em>light</em>
<em>from </em><em>reaching </em><em>Earth </em>
Answer:
Orbital period of the planet will be 207.06 year
Explanation:
We have given the planet have the semi major axis as 35 au
We have to find the orbital period of the planet
From Keplar's third law there is relation between the orbital period and semi major axis which is t 
So 


So orbital period of the planet will be 207.06 year
Answer:

Explanation:
Given data

For Part (a)
Starting with the -ve acceleration of the body (opposite to the gravitational force)

Using equation of motion

For Part (b)
Using the result in Part (a) we can substitute in other equation of motion to get time t:

For Part (c)
At state 2 where vo=0m/s and the acceleration is positive (same direction as the gravitational force)

Hello!
We have the following data:
KE (Kinetic Energy) = ? (in Joule)
m (mass) = 0.5 Kg
v (speed) = 10 m/s
<span>Formula to calculate kinetic energy:
</span>

<span>
Solving:
</span>





I hope this helps! =)