Answer:
Malachite
Explanation:
Malachite is a copper carbonate hydroxide mineral, with the equation Cu2CO3(OH)2. This dark, green-joined mineral solidifies in the monoclinic precious stone framework, and frequently shapes botryoidal, sinewy, or stalagmitic masses, in cracks and profound, underground spaces, where the water table and aqueous liquids give the way to synthetic precipitation. So, the answer is malachite. Best of Luck!
Data can arranged into visual displays called graphs. There are multiple types of graphs such as bar graphs, line graphs, scatter plots, and pie charts.
hopefully this helps :)
Answer:
PCl₅ = 0.03 X 208 = 6.24g
PCl₃ = 0.05 X 137 =6.85 g
Cl₂ = 0.03X71 = 2.13 g
Explanation:
The equilibrium constant will remain the same irrespective of the amount of reactant taken.
Let us calculate the equilibrium constant of the reaction.
Kc=![\frac{[PCl_{3}][Cl_{2}]}{[PCl_{5}]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BPCl_%7B3%7D%5D%5BCl_%7B2%7D%5D%7D%7B%5BPCl_%7B5%7D%5D%7D)
Let us calculate the moles of each present at equilibrium

molar mass of PCl₅=208
molar mass of PCl₃=137
molar mass of Cl₂=71
moles of PCl₅ = 
moles of PCl₃= 
moles of Cl₂ = 
the volume is 5 L
So concentration will be moles per unit volume
Putting values
Kc = 
Now if the same moles are being transferred in another beaker of volume 2L then there will change in the concentration of each as follow

Initial 0.02 0.06 0.04
Change -x +x +x
Equilibrium 0.02-x 0.06+x 0.04+x
Conc. (0.02-x)/2 (0.06+x)/2 (0.04+x)/2
Putting values
0.024 = 
Solving



x = -0.01
so the new moles of
PCl₅ = 0.02 + 0.01 =0.03
PCl₃ = 0.06-0.01 = 0.05
Cl₂ = 0.04-0.01 = 0.03
mass of each will be:
mass= moles X molar mass
PCl₅ = 0.03 X 208 = 6.24g
PCl₃ = 0.05 X 137 =6.85 g
Cl₂ = 0.03X71 = 2.13 g
Answer:
B
Explanation:
to find the new rate when the concentration of reactants changes