This is a problem involving heat transfer through radiation. The solution to this problem would be to use the formula for heat flux.
ΔQ/Δt = (1000 W/m²)∈Acosθ
A is the total surface area:
A = (1 m²) + 4(1.8 cm)(1m/100 cm)(√(1 m²))
A = 1.072 m²
ΔQ is the heat of melting ice.
ΔQ = mΔHfus
Let's find its mass knowing that the density of ice is 916.7 kg/m³.
ΔQ = (916.7 kg/m³)(1 m²)(1.8 cm)(1m/100 cm)(<span>333,550 J/kg)
</span>ΔQ = 5,503,780 J
5,503,780 J/Δt = (1000 W/m²)(0.05)(1.072 m²)(cos 33°)
<em>Δt = 122,434.691 s or 34 hours</em>
Hbro dissociate as follows
HBro---> H+ + BrO-
Ka= (H+)(BrO-) / HBro
PH = -log (H+)
therefore (H+) = 10^-4.48= 3.31 x10^-5
ka is therefore= ( 3.31 x 10^-5)^2/0.55=1.99 x10^-9
They are nitrogen, oxygen, hydrogen
The answer is D.
<u>Explanation</u>
Without trees, no carbon dioxide will be released into the air. It would not raise oxygen levels, and it wouldn’t effect rising sea levels.
Answer:
Energy lost is 7.63×10⁻²⁰J
Explanation:
Hello,
I think what the question is requesting is to calculate the energy difference when an excited electron drops from N = 15 to N = 5
E = hc/λ(1/n₂² - 1/n₁²)
n₁ = 15
n₂ = 5
hc/λ = 2.18×10⁻¹⁸J (according to the data)
E = 2.18×10⁻¹⁸ (1/n₂² - 1/n₁²)
E = 2.18×10⁻¹⁸ (1/15² - 1/5²)
E = 2.18×10⁻¹⁸ ×(-0.035)
E = -7.63×10⁻²⁰J
The energy lost is 7.63×10⁻²⁰J
Note : energy is lost / given off when the excited electron jumps from a higher energy level to a lower energy level