1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
worty [1.4K]
3 years ago
15

Mark creates a graphic organizer to review his notes about electrical force. Which labels belong in the regions marked X and Y?

Physics
2 answers:
sveta [45]3 years ago
8 0

Answer:

The correct answer is A

Explanation:

The question requires as well the attached image, so please see that below.

Coulomb's Law.

The electrical force can be understood by remembering Coulomb's Law, that  describes the electrostatic force between two charged particles. If the particles have charges q_1 and q_2, are separated by a distance r and are at rest relative to each other, then its electrostatic force magnitude on particle 1 due particle 2 is given by:

|F|=k \cfrac{q_1 q_2}{r^2}

Thus if we decrease the distance by half we have

r_1 =\cfrac r2

So we get

|F|=k \cfrac{q_1 q_2}{r_1^2}

Replacing we get

|F|=k \cfrac{q_1 q_2}{(r/2)^2}\\|F|=k \cfrac{q_1 q_2}{r^2/4}

We can then multiply both numerator and denominator by 4 to get

|F|=k \cfrac{4q_1 q_2}{r^2}

So we have

|F|=4 \left(k \cfrac{q_1 q_2}{r^2}\right)

Thus if we decrease the distance by half we get four times the force.

Then we can replace the second condition

q_{2new} =2q_2

So we get

|F|=k \cfrac{q_1 q_{2new}}{r_1^2}

which give us

|F|=k \cfrac{q_1 2q_2}{r_1^2}\\|F|=2\left(k \cfrac{q_1 q_2}{r_1^2}\right)

Thus doubling one of the charges doubles the force.

So the answer is A.

Fiesta28 [93]3 years ago
7 0

Answer:

X: Decreasing to half will quadruple force

Y: Doubling will double force

You might be interested in
Assume the motions and currents mentioned are along the x axis and fields are in the y direction. (a) does an electric field exe
matrenka [14]
<span> (a) does an electric field exert a force on a stationary charged object? 
Yes. The force exerted by an electric field of intensity E on an object with charge q is
</span>F=qE
<span>As we can see, it doesn't depend on the speed of the object, so this force acts also when the object is stationary.

</span><span>(b) does a magnetic field do so?
No. In fact, the magnetic force exerted by a magnetic field of intensity B on an object with  charge q and speed v is
</span>F=qvB \sin \theta
where \theta is the angle between the direction of v and B.
As we can see, the value of the force F depends on the value of the speed v: if the object is stationary, then v=0, and so the force is zero as well.

<span>(c) does an electric field exert a force on a moving charged object? 
Yes, The intensity of the electric force is still
</span>F=qE
<span>as stated in point (a), and since it does not depend on the speed of the charge, the electric force is still present.

</span><span>(d) does a magnetic field do so?
</span>Yes. As we said in point b, the magnetic force is
F=qvB \sin \theta
And now the object is moving with a certain speed v, so the magnetic force F this time is different from zero.

<span>(e) does an electric field exert a force on a straight current-carrying wire?
Yes. A current in a wire consists of many charges traveling through the wire, and since the electric field always exerts a force on a charge, then the electric field exerts a force on the charges traveling through the wire.

</span><span>(f) does a magnetic field do so? 
Yes. The current in the wire consists of charges that are moving with a certain speed v, and we said that a magnetic field always exerts a force on a moving charge, so the magnetic field is exerting a magnetic force on the charges that are traveling through the wire.

</span><span>(g) does an electric field exert a force on a beam of moving electrons?
Yes. Electrons have an electric charge, and we said that the force exerted by an electric field is
</span>F=qE
<span>So, an electric field always exerts a force on an electric charge, therefore on an electron beam as well.

</span><span>(h) does a magnetic field do so?
Yes, because the electrons in the beam are moving with a certain speed v, so the magnetic force
</span>F=qvB \sin \theta
<span>is different from zero because v is different from zero.</span>
6 0
3 years ago
Use the information from the graph to answer the question.
galina1969 [7]

The displacement of the object as determined from the velocity-time graph is 562.5 m.

<h3>What is a velocity-time graph?</h3>

A velocity-time graph is a graph of the velocity of an object plotted in the vertical or y-axis of the graph against the time taken on the horizontal or x-axis.

The displacement of an object can be obtained from its velocity-time graph by calculating the total area under the graph.

The total area under the graph = area of triangle + area of rectangle

Area of triangle = b*h/2 =

Area of triangle = 25 * (35 - 10)/2 = 312.5 m

Area of rectangle = l * b

Area of rectangle = 10 * 25 = 250 m

Total area = (312.5 + 250) m

Total area = 562.5 m

Therefore, the displacement of the object is 562.5 m

In conclusion, the total area of a velocity-time graph gives the displacement.

Learn more about velocity-time graph at: brainly.com/question/28064297

#SPJ1

5 0
1 year ago
if you wanted to learn more about the universe, what would you study? a. life science b. logic c. philosophy d. physical science
agasfer [191]
You would study Physical Science. 
4 0
3 years ago
What is the kinetic energy of a 1200 kg object that is moving at a speed of 24m/s?
n200080 [17]
Here, K.E. = 1/2 * mv²

So, K.E. = 1/2 * (1200) * (24)²

K.E. = 1/2 * 1200 * 576

K.E. = 600 * 576

K.E. = 345,600 J

Hope this helps!
6 0
3 years ago
A block oscillating on a spring has period T = 2.8 s . (Note: You do not know values for either m or k. Do not assume any partic
olasank [31]

Answer:

Part a)

T = 3.96 s

Part b)

T = 1.98 s

Part c)

T = 2.8 s

Explanation:

As we know that time period of spring block system is given as

T = 2\pi\sqrt{\frac{m}{k}}

T = 2.8 s

Part a)

If the mass of the block attached is doubled

then we will have

T' = 2\pi\sqrt{\frac{2m}{k}}

T' = \sqrt2 T

T' = 3.96 s

Part b)

If the spring constant is doubled

then we have

T' = 2\pi\sqrt{\frac{m}{2k}}

T' = \frac{T}{\sqrt2}

T' = 1.98 s

Part c)

If the amplitude is halved but mass and spring constant will remain the same

so here we know that time period does not depends on Amplitude

so we will have

T = 2\pi\sqrt{\frac{m}{k}}

T = 2.8 s

7 0
3 years ago
Other questions:
  • An ion in a mass spectrometer follows a semicircular path of radius 14.8. What is the distance it travels?
    11·2 answers
  • An electromagnetic wave of intensity 150 W/m2 is incident normally on a rectangular black card with sides of 25 cm and 30 cm tha
    9·1 answer
  • The speed limit on some interstate highways is roughly 80 km/h. What is this in meters per second? How many miles per hour is th
    14·1 answer
  • How much work is accomplished when a force of 300N pushes a box across the floor for a distance of 100 meters?
    13·2 answers
  • How high off the ground is a a book that has 120 J of potential energy and a 4-kg mass ​
    10·1 answer
  • what is the specific heat of a substance that requires 99,100J of thermal energy to heat 3.47 kg of this substance from 15 C to
    15·1 answer
  • What happens during an equinox?
    10·1 answer
  • a block weighing (Fg) 50 N is resting on a steel table (us = 0.74). The minimum force to start this block moving is what N
    8·1 answer
  • Tin shears have longer handles than the scissors used to cut cloth why ​
    12·1 answer
  • Please answer my question
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!