Answer:

Explanation:
Given:
- thickness of the base of the kettle,

- radius of the base of the kettle,

- temperature of the top surface of the kettle base,

- rate of heat transfer through the kettle to boil water,

- We have the latent heat vaporization of water,

- and thermal conductivity of aluminium,

<u>So, the heat rate:</u>


<u>From the Fourier's law of conduction we have:</u>


where:
area of the surface through which conduction occurs
temperature of the bottom surface

is the temperature of the bottom of the base surface of the kettle.
Answer:
163.35
__________________________________________________________
<u>We are given:</u>
Mass of the object (m) = 36.3 kg
Velocity of the object (v) = 3 m/s
<u>Kinetic Energy of the object:</u>
We know that:
Kinetic Energy = 1/2(mv²)
KE = 1/2(36.3)(3)² [replacing the variables with the given values]
KE = 18.15 * 9
KE = 163.35 Joules
Hence, the cart has a Kinetic Energy of 163.35 Joules
Answer:
b. 600,000 J
Explanation:
Applying the law of conservation of energy,
The thermal energy created = Kinetic energy of the suv.
Q' = 1/2(mv²)............... Equation 1
Where Q' = Thermal energy, m = mass of the suv, v = velocity of the suv.
From the question,
Given: m = 3000 kg, v = 20 m/s
Substitute these values into equation 1
Q' = 1/2(3000×20²)
Q' = 600000 J
Hence the right option is b. 600,000 J
Answer:The place to go for the answer to such an easy question is the SI Brochure, the document which defines the SI and all its units.
Answer:
r = 0.02 m
Explanation:
from the question we have :
speed = 1 rps = 1x 60 = 60 rpm
coefficient of friction (μ) = 0.1
acceleration due to gravity (g) = 9.8 m/s^{2}
maximum distance without falling off (r) = ?
to get how far from the center of the disk the coin can be placed without having to slip off we equate the formula for the centrifugal force with the frictional force on the turntable force
mv^2 / r = m x g x μ
v^2 / r = g x μ .......equation 1
where
velocity (v) = angular speed (rads/seconds) x radius
angular speed (rads/seconds) = (\frac{2π}{60} ) x rpm
angular speed (rads/seconds) = (\frac{2 x π}{60} ) x 60 = 6.28 rads/ seconds
now
velocity = 6.28 x r = 6.28 r
now substituting the value of velocity into equation 1
v^2 / r = g x μ
(6.28r)^2 / r = 9.8 x 0.1
39.5 x r = 0.98
r = 0.02 m