So momentum is just velocity times mass, this means Momentum = Velocity x Mass.
We can rearrange this to be Velocity = Momentum/Mass.
Since we know momentum and mass we can now solve.
Velocity = 264/(45+2.5)
= 5.56 m/s
Answer:
T= 5.18N
Explanation:
u = mass of chord / length of chord
u = 0.49/ 7.3
u = 0.067 kg/m
Velocity of sound waves (v) =length of chord / time taken for wave to travel
v = 7.3 / 0.83 = 8.795m/s
Tension is calculated below using the formula
T = v² * u
T = (8.795)² x 0.067
T= 5.18N
Constant acceleration of plane = 3m/s²
a) Speed of the plane after 4s
Acceleration = speed/time
3m/s² = speed/4s
S = 12m/s
The speed of the plane after 4s is 12m/s.
b) Flight point will be termed as the point the plane got initial speed, u, 20m/s
Find speed after 8s, v
a = 3m/s²
from,
a = <u>v</u><u> </u><u>-</u><u> </u><u>u</u>
t
3 = <u>v</u><u> </u><u>-</u><u> </u><u>2</u><u>0</u>
8
24 = v - 20
v = 44m/s
After 8s the plane would've 44m/s speed.
Answer:
Since strong nuclear forces involve only nuclear particles (not electrons, bonds, etc) items 3 and 4 are eliminated.
Again item 2 refers to bonds between atoms and is eliminated.
This leaves only item 1.
Nuclear forces are very short range forces between components of the nucleus.
Weak nuclear forces are trillions of times smaller than strong forces.
Gravitational forces are much much smaller than the weak nuclear force.