Palm of your hand should be the correct answer if i remember correctly
Answer:
A few of the positive particles aimed at a gold foil seemed to bounce back.
Explanation:
Answer:
Approximately
(assuming that the projectile was launched at angle of
above the horizon.)
Explanation:
Initial vertical component of velocity:
.
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing
is the same as the altitude
at which this projectile was launched:
.
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is
(upwards,) the vertical velocity right before landing would be
(downwards.) The change in vertical velocity is:
.
Since there is no drag on this projectile, the vertical acceleration of this projectile would be
. In other words,
.
Hence, the time it takes to achieve a (vertical) velocity change of
would be:
.
Hence, this projectile would be in the air for approximately
.
Do they give answer choices? or is it free write? i’ll help if you tell me!!
Answer:
<u>velocity of swimmer relative to ground = 3 i -5 j</u>
Explanation:
- To cross a river the swimmer swims relative to river in perpendicular direction.
Velocity of river = -5 j (south)
Velocity of swimmer relative to river = 3 i(north)
So
<h2>
Velocity of swimmer relative to ground = Velocity of swimmer relative to river + Velocity of river</h2>
Velocity of swimmer relative to ground = 3 i -5 j
So magnitude of total velocity is
=
= 