Answer:
After 12 seconds, the area enclosed by the ripple will be increasing rapidly at the rate of 1206.528 ft²/sec
Explanation:
Area of a circle = πr²
where;
r is the circle radius
Differentiate the area with respect to time.

dr/dt = 4 ft/sec
after 12 seconds, the radius becomes = 
To obtain how rapidly is the area enclosed by the ripple increasing after 12 seconds, we calculate dA/dt


dA/dt = 1206.528 ft²/sec
Therefore, after 12 seconds, the area enclosed by the ripple will be increasing rapidly at the rate of 1206.528 ft²/sec
Answer:
480J
Explanation:
Using the formula:
Delta U = Q - W
Q:Heat (J)
Delta U: Changes in internal Energy (J)
W:Work (J)
We can plug in the give numbers, Q and W.
Delta U = 658J - 178J = 480J
It's momentum is twice as much.
Answer:
The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ
Explanation:
Given that,
Wavelength = λ
For D to be small,
We need to calculate the minimum width
Using formula of minimum width


Where, D = width of slit
= wavelength
Put the value into the formula

Here,
should be maximum.
So. maximum value of
is 1
Put the value into the formula


(b). If the minimum number is 50
Then, the width is


(c). If the minimum number is 1000
Then, the width is


Hence, The minimum value of width for first minima is λ
The minimum value of width for 50 minima is 50λ
The minimum value of width for 1000 minima is 1000λ