The easiest way to build a unit for energy is to remember that
'work' is energy, and
Work = (force) x (distance).
So energy is (unit of force) x (unit of distance)
[Energy] = (Newton) (meter) .
'Newton' itself is a combination of base units, so
energy is really
(kilogram-meter/sec²) (meter)
= kilogram-meter² / sec² .
That unit is so complicated that it's been given a special,
shorter name:
Joule .
It doesn't matter what kind of energy you're talking about.
Kinetic, potential, nuclear, electromagnetic, food, chemical,
muscle, wind, solar, steam ... they all boil down to Joules.
And if you generate, use, transfer, or consume 1 Joule of
energy every second, then we say that the 'power' is '1 watt'.
Answer:
a) 3.39 × 10²³ atoms
b) 6.04 × 10⁻²¹ J
c) 1349.35 m/s
Explanation:
Given:
Diameter of the balloon, d = 29.6 cm = 0.296 m
Temperature, T = 19.0° C = 19 + 273 = 292 K
Pressure, P = 1.00 atm = 1.013 × 10⁵ Pa
Volume of the balloon =
or
Volume of the balloon =
or
Volume of the balloon, V = 0.0135 m³
Now,
From the relation,
PV = nRT
where,
n is the number of moles
R is the ideal gas constant = 8.314 kg⋅m²/s²⋅K⋅mol
on substituting the respective values, we get
1.013 × 10⁵ × 0.0135 = n × 8.314 × 292
or
n = 0.563
1 mol = 6.022 × 10²³ atoms
Thus,
0.563 moles will have = 0.563 × 6.022 × 10²³ atoms = 3.39 × 10²³ atoms
b) Average kinetic energy =
where,
Boltzmann constant,
Average kinetic energy =
or
Average kinetic energy = 6.04 × 10⁻²¹ J
c) rms speed =
where, m is the molar mass of the Helium = 0.004 Kg
or
rms speed =
or
rms speed = 1349.35 m/s
Each stream in a drainage system drains into a certain area. In a drainage basin the water falling in the basin drain will fall into the same stream. A drainage divides drawing basin from other drainage basins
Answer:
W = - 118.24 J (negative sign shows that work is done on piston)
Explanation:
First, we find the change in internal energy of the diatomic gas by using the following formula:
where,
ΔU = Change in internal energy of gas = ?
n = no. of moles of gas = 0.0884 mole
Cv = Molar Specific Heat at constant volume = 5R/2 (for diatomic gases)
Cv = 5(8.314 J/mol.K)/2 = 20.785 J/mol.K
ΔT = Rise in Temperature = 18.8 K
Therefore,
Now, we can apply First Law of Thermodynamics as follows:
where,
ΔQ = Heat flow = - 83.7 J (negative sign due to outflow)
W = Work done = ?
Therefore,
<u>W = - 118.24 J (negative sign shows that work is done on piston)</u>
Answer:
A. El volumen
B. La densidad.
Explanation:
A derived quantity is defined as one that has to be calculated by using two or more other measurements.
Volume is a derived quantity because it requires one to use different measurements to determine it. For instance, in the case of a cube, the length, width and height of the cube are all needed to calculate volume.
Density is also a derived quantity because it needs both volume and mass for it to be calculated.