The second diver have to leap to make a competitive splash by 4.08 m high.
<h3>What is potential energy?</h3>
The energy by virtue of its position is called the potential energy.
PE = mgh
where, g = 9.81 m/s²
Given is the diver jumps from a 3.00-m platform. one diver has a mass of 136 kg and simply steps off the platform. another diver has a mass of 100 kg and leaps upward from the platform.
The potential energy of the first diver must be equal to the second diver.
P.E₁ = P.E₂
m₁gh₁ = m₂gh₂
Substitute the vales, we have
136 x 3 = 100 x h₂
h₂ = ₂4.08 m
Thus, the second diver need to leap by 4.08 m high.
Learn more about potential energy.
brainly.com/question/24284560
#SPJ1
Answer:
Compared to windshield the airbag exerts much lesser force
Explanation:
Impulse is defined as change in momentum of the object when it is acted upon by a force during interval of time
<em>Impulse = Impulsive force *time</em>
I = F*Δt
If the object should be bought to rest from certain velocity there should be change in momentum. If the duration in which the momentum is increased then there would be less force applied and hence less damage.
Airbags are used to reduce the force experience by the people when they are met with accident by extending the time required to stop the momentum.
During the collision, the passenger is carried towards the<em> windshield</em> and if they are stopped by collision with wind shield the force will be larger and more damage.But if they are hit with airbag then the force will be less due to increased time.
The change is momentum will be the same with or without momentum but its the time that decides the impact of force.By making it longer the force become less.
<em>Thus compared to the windshield the airbag exerts much lesser force.</em>
<em> </em>
D. There are two phosphate ions in a molecule of magnesium phosphate
Answer:
B
Explanation:
Depends Mostly on bonds electrolysis can be used, chemical bonding like additional of water or by heating back to their elements.
Answer:twice of initial value
Explanation:
Given
spring compresses
distance for some initial speed
Suppose v is the initial speed and k be the spring constant
Applying conservation of energy
kinetic energy converted into spring Elastic potential energy

When speed doubles

divide 1 and 2


Therefore spring compresses twice the initial value