There are two ways to solve this. The longer way is to use those equations to calculate numbers for total distance.
The easier way is to find the area under the graph. That's right, AREA UNDER VELOCITY-TIME graph is the TOTAL DISTANCE travelled!
it's a shortcut.
Let's split up the area into a triangle and rectangle:
Triangle = 0.5(4-0)(10-0) = 20 m
Rectangle = (6-4)(10-0) = 20 m
Total distance = 40 m!
Answer:
AN average heavy weight is 175 pounds. The heaviest weight ever recorded though was 1,400 pounds, or 635 kilograms.
Answer: then you’re not sick d u h
Explanation:
Answer:
The amount of work done required to stretch spring by additional 4 cm is 64 J.
Explanation:
The energy used for stretching spring is given by the relation :
.......(1)
Here k is spring constant and x is the displacement of spring from its equilibrium position.
For stretch spring by 2.0 cm or 0.02 m, we need 8.0 J of energy. Hence, substitute the suitable values in equation (1).
k = 4 x 10⁴ N/m
Energy needed to stretch a spring by 6.0 cm can be determine by the equation (1).
Substitute 0.06 m for x and 4 x 10⁴ N/m for k in equation (1).
E = 72 J
But we already have 8.0 J. So, the extra energy needed to stretch spring by additional 4 cm is :
E = ( 72 - 8 ) J = 64 J