Answer:
The solution for the given problem is done below.
Explanation:
M1 = 2.0
= 0.3636
= 0.5289
= 0.7934
Isentropic Flow Chart: M1 = 2.0 ,
= 1.8
T1 =
(1.8)(288K) = 653.4 K.
In order to choke the flow at the exit (M2=1), the above T0* must be stagnation temperature at the exit.
At the inlet,
T02=
= (1.8)(288K) = 518.4 K.
Q= Cp(T02-T01) =
= 135.7*
J/Kg.
Answer: the answer will be d because it is the right one to be
Explanation:
Answer:
a) the power consumption of the LEDs is 0.25 watt
b) the LEDs drew 0.0555 Amp current
Explanation:
Given the data in the question;
Three AAA Batteries;
<---- 1000mAh [ + -] 1.5 v ------1000mAh [ + -] 1.5 v --------1000mAh [ + -] 1.5 v------
so V_total = 3 × 1.5 = 4.5V
a) the power consumption of the LEDs
I_battery = 1000 mAh / 18hrs { for 18 hrs}
I_battery = 1/18 Amp { delivery by battery}
so consumption by led = I × V_total
we substitute
⇒ 1/18 × 4.5
P = 0.25 watt
Therefore the power consumption of the LEDs is 0.25 watt
b) How much current do the LEDs draw
I_Draw = I_battery = 1/18 Amp = 0.0555 Amp
Therefore the LEDs drew 0.0555 Amp current
Answer:
(a) 2.39 MPa (b) 3.03 kJ (c) 3.035 kJ
Explanation:
Solution
Recall that:
A 10 gr of air is compressed isentropically
The initial air is at = 27 °C, 110 kPa
After compression air is at = a450 °C
For air, R=287 J/kg.K
cv = 716.5 J/kg.K
y = 1.4
Now,
(a) W efind the pressure on [MPa]
Thus,
T₂/T₁ = (p₂/p₁)^r-1/r
=(450 + 273)/27 + 273) =
=(p₂/110) ^0.4/1.4
p₂ becomes 2390.3 kPa
So, p₂ = 2.39 MPa
(b) For the increase in total internal energy, is given below:
ΔU = mCv (T₂ - T₁)
=(10/100) (716.5) (450 -27)
ΔU =3030 J
ΔU =3.03 kJ
(c) The next step is to find the total work needed in kJ
ΔW = mR ( (T₂ - T₁) / k- 1
(10/100) (287) (450 -27)/1.4 -1
ΔW = 3035 J
Hence, the total work required is = 3.035 kJ