Answer:
The minimum distance between two points on the object that are barely resolved is 0.26 mm
The corresponding distance between the image points = 0.0015 m
Explanation:
Given
focal length f = 50 mm and maximum aperture f>2
s = 9.0 m
aperture = 25 mm = 25 *10^-3 m
Sin a = 1.22 *wavelength /D
Substituting the given values, we get –
Sin a = 1.22 *600 *10^-9 m /25 *10^-3 m
Sin a = 2.93 * 10 ^-5 rad
Now
Y/9.0 m = 2.93 * 10 ^-5
Y = 2.64 *10^-4 m = 0.26 mm
Y’/50 *10^-3 = 2.93 * 10 ^-5
Y’ = 0.0015 m
Answer:
Sum of the forces will be equal to 3.479 N
Explanation:
We have given two same forces are oriented at an angle of 38°
Magnitude of each force is given 
We have to find the sum of the forces
Sum of the forces will be equal to

So sum of the forces will be equal to 
So sum of the force will be equal to 3.479 N
According to Newton's second law
E.e = a * mp ..... (1)
where
E is the magnitude of the electric field; e = 1.6 * 10^-19 is the elementary charge; mp = 1.67*10^-27 kg is the proton mass; a is the acceleration.
So, the distance
l = at^2/2 .......(2)
The proton accelerated
a = 2l / t^2 ...........(3)
From equations (1) and (3)
E= 32.51 V/m
Electric field
The physical field that surrounds electrically charged particles and exerts a force on all other charged particles in the field, either attracting or repelling them, is known as an electric field (also known as an E-field). It can also refer to a system of charged particles' physical field. Electric charges and time-varying electric currents are the building blocks of electric fields. The electromagnetic field, one of the four fundamental interactions (also known as forces) of nature, manifests itself in both electric and magnetic fields.
To learn more about an electric field refer here:
brainly.com/question/15800304
#SPJ4
Refraction is the change in direction of waves that occurs when waves travel from one medium to another. Refraction is always accompanied by a wavelength and speed change. Diffraction is the bending of waves around obstacles and openings.
The point in which it originates.