Answer:
<h3>The answer is 2.85 kg</h3>
Explanation:
The mass of the object can be found by using the formula

f is the force
a is the acceleration
From the question we have

We have the final answer as
<h3>2.85 kg</h3>
Hope this helps you
Answer:
Do not see a picture or graph but suspect it would show the golf ball falling faster and striking the ground slightly before the soccer ball.
Probably D: Soccer ball was affected by air resistance more than the golf ball.
Explanation:
Even though heavier, friction loss of the greater surface area soccer ball will counter pull of gravity more than the compact golf ball.
In a vacuum, (no friction) both objects fall at the same rate regardless of mass.
Answer:
The given vector can be represented in unit vector as

The magnitude of any vector
is given by

Applying values we get

We know that positive x axis in vertorial form is represented as

taking dot product of both the vector's we get

Answer:
In an ideal pulley system is assumed as a perfect system, and the efficiency of the pulley system is taken as 100% such that there are no losses of the energy input to the system through the system's component
However, in a real pulley system, there are several means through which energy is lost from the system through friction, which is converted into heat, sound, as well as other forms of energy
Given that the mechanical advantage = Force output/(Force input), and that the input force is known, the energy loss comes from the output force which is then reduced, and therefore, the Actual Mechanical Advantage (AMA) is less than the Ideal Mechanical Advantage of an "ideal" pulley system
The relationship between the actual and ideal mechanical advantage is given by the efficiency of the pulley system as follows;

Explanation: