Weight = (mass) x (gravity)
Weight = (8 x 10⁻⁴ kg) x (10 N/kg) = 0.008 Newton
That would be
0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />
Answer:
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg
Explanation:
Hi there!
Due to conservation of energy, the potential energy (PE) of the mass at a height of 3.32 m will be transformed into elastic potential energy (EPE) when it falls on the mattress:
PE = EPE
m · g · h = 1/2 k · x²
Where:
m = mass.
g = acceleration due to gravity.
h = height.
k = spring constant.
x = compression distance
The maximum compression distance is 0.1289 m, then, the maximum elastic potential energy will be the following:
EPE =1/2 k · x²
EPE = 1/2 · 65144 N/m · (0.1289 m)² = 541.2 J
Then, using the equation of gravitational potential energy:
PE = m · g · h = 541.2 J
m = 541.2 J/ g · h
m = 541.2 kg · m²/s² / (9.8 m/s² · 3.32 m)
m = 16.6 kg
The maximum mass that can fall on the mattress without exceeding the maximum compression distance is 16.6 kg.
Grass dear wolf is the right awnser
Answer: hello your question lacks the required diagram attached below is the required diagram
answer : Both cars will move backwards and stop due to friction.
Explanation:
Given that both cars are negatively charged, When the wedges are removed both cars will move backwards ( repelling each other ) because they are like poles, and Like poles repel each other. while unlike poles attract each other ( forward movement ) .
The cars will later come to a stop due to frictional forces between the cars and the surface.