The half life of Carbon-14 is 5730 years, how many years would it take for 7/8 of the original amount to decay?
<span>Can somebody please help with this problem. I *think* I understand the basics of what a half life is. If I learned correctly, its the amount it takes for half of a sample to decay. It should also happen exponentially, 1/2 remaining after one half life, 1/4 after the second, 1/16 after the third etc. I'm still a little shaky though. Could somebody please clarify what exactly a half life is and how it can be determined (i.e. how to find the time it would take for 7/8 to decay) </span>
Use kinematic equations to solve:
1) yf = yo + vo*t + 1/2at²
yf = final height
yo = initial height
vo = initial velocity
a = acceleration
t = time
yf - yo = vo*t + 1/2at²
yf - yo = h
vo = 0
Thus,
h = 1/2at²
h = 1/2(9.8)(12)² = 705.6 m
2) vf = vo + at
vo = 0
Thus,
vf = at
vf = (9.8)(12) = 117.6 m/s
Answer:
6) False
7) True
8) False
9) False
10) False
11) True
12) True
13) True
14) True
Explanation:
The spacing between two energy levels in an atom shows the energy difference between them. Clearly, B has a greater value of ∆E compared to A. This implies that the wavelength emitted by B is greater than A while B will emit fewer, more energetic photons.
When atoms jump from lower to higher energy levels, photons are absorbed. The kinetic energy of the incident photon determines the frequency, wavelength and colour of light emitted by the atom.
The energy level to which an atom is excited is determined by the kinetic energy of the incident electron. As the voltage increases, the kinetic energy of the electron increases, the further the atom is from the source of free electrons, the greater the required kinetic energy of free electron. When electrons are excited to higher energy levels, they must return to ground state.
Because many fuels are fossil fuels they take millions of years to form and the known reserves are being used much faster than the new ones being made
Answer: Carbon 14 and Uranium 238 are not used together to determine fossil ages.
Explanation:
Carbon 14 with a half life of 5,700 years can only be used to date fossils of approximately 50,000 years. Most fossils are thought to be much older than 50,000 years. Also most fossils no longer contain any Carbon. The fossilized remains have been mineralized where the original organic material has been replaced and turned into stones containing no carbon.
Uranium 238 has a half life of 4.5 billion years. Uranium can be used to date the age of the earth. If 50% of pure uranium' is left in a sample the sample is assumed to be 4.5 billion years old.( This is assuming that the original sample was 100% uranium and no Uranium 238 has been eroded or lost in 4.5 billion years old. If a fossil has only 25 % of the Uranium 238 the sample has an estimated age of 3.2 Billion years. This would be the estimated age of the earliest life or formation of fossils.
Note no fossils contain Uranium 238. Uranium 238 is only found in igneous or volcanic rocks. So no fossils can be dated directly using U 238.
Because of the huge differences in the half lives of Carbon 14 and Uranium238 they cannot be used together. Carbon 14 can only be used to date fossils of a very recent age. Uranium 238 can only be used to date volcanic rocks of a very old age.