Answer:
The electric charge, q (in coulomb units) = 5004 C
Given:
The charge stored as printed on NiMH battery, q = 1390 mAh
Solution:
To express the amount of electric charge printed on the battery in milli-ampere-hour (mAh) in coulomb, we will do simple conversion of milli amperes in ampere and hours in seconds:
1 mA = 
1 hour = 
Also, we know that the rate of flow of charge is electric current, I:
I = 
⇒ q = [tex]I\times t[tex] (1)
where
q = electric charge
I = current
t = time taken for flow of current
Using eqn(1), we get:
q = [tex]1390\times 10^{-3}\times 60\times 60[tex]
q = 5004 A-s = 5004 C
Answer:
Answer is 6.452Ω
Explanation:
R1= 10Ω
R2= 20Ω
R3= 200Ω
1/R123= 1/R1+ 1/R2+ 1/R3
Find the LCM then find the inverse of the answer, then replace the values of the lettered resistors.
I hope this helps if not please let me know
Answer:
The force of static friction acting on the luggage is, Fₓ = 180.32 N
Explanation:
Given data,
The mass of the luggage, m = 23 kg
You pulled the luggage with a force of, F = 77 N
The coefficient of static friction of luggage and floor, μₓ = 0.8
The formula for static frictional force is,
Fₓ = μₓ · η
Where,
η - normal force acting on the luggage 'mg'
Substituting the values in the above equation,
Fₓ = 0.8 x 23 x 9.8
= 180.32 N
Hence, the minimum force require to pull the luggage is, Fₓ = 180.32 N