The total displacement is equal to the total distance. For the east or E direction, the distance is determined using the equation:
d = vt = (22 m/s)(12 s) = 264 m
For the west or W direction, we use the equations:
a = (v - v₀)/t
d = v₀t + 0.5at²
Because the object slows down, the acceleration is negative. So,
-1.2 m/s² = (0 m/s - 22 m/s)/t
t = 18.33 seconds
d = (22 m/s)(18.33 s) + 0.5(-1.2 m/s²)(18.33 s)²
d = 201.67 m
Thus,
Total Displacement = 264 m + 201.67 m = 465.67 or approximately 4.7×10² m.
The magnitude of gravity is expressed in terms of its acceleration. So the magnitude of ' g ' at that altitude is exactly 6.5 m/s^2.
Answer:
the kinetic energy lost due to friction is 22.5 J
Explanation:
Given;
mass of the block, m = 0.2 kg
initial velocity of the block, u = 25 m/s
final velocity of the block, v = 20 m/s
The kinetic energy lost due to friction is calculated as;

Therefore, the kinetic energy lost due to friction is 22.5 J
The question is asking to describe and state and calculate what do the observer on the earth measure for the speed of the laser beam, and base on my research, the answer would be v = 1bc, I hope you are satisfied with my answer and feel free to ask for more
Answer:
a) v = 6.43 m/s
b) v = 15.8 m/s
Explanation:
Speed of car = 56 km/h
56 km/h = 14.4 m/s
Angle rain makes on the glass to the vertical = 66°
Thus knowing that the opposite side of the angle is the distance moved by the car, and the adjacent side is the distance traveled by the rain in the same time
both of which are directly proportional to their velocities
Then
tan(66°) = 14.44m/s ÷ x
or x = 14.44/tan(66°)
Which is the vertical raindrop velocity of the relative to earth
v = 6.43 m/s vertically towards earth
For v relative to the car is we have vector sum of both velocities
v = √(14.44^2 + 6.43^2) = 15.8 m/s which is the velocity relative to car
= 15.8 m/s