The HCl added = 1.25 moles
and the moles of Na2HPO4 = 1 mole
Now when acid is added in the given solution of Na2HPO4
One mole of H+ will react with one mole of Na2HPO4 to given one mole of NaH2PO4
Na2HPO4 + H+ ---> NaH2PO4
Now this one mole formed NaH2PO4 will further react with 0.25 moles of H+ left to form 0.25 moles of H3PO4 and 0.75 moles of NaH2PO4 will remain in the solution
So this will result into formation of a buffer of phosphoric acid and NaH2PO4
NaH2PO4 + H+ ---> H3PO4
pKa of H3PO4 = 2.1
so pH = pKa + log [salt] / [acid] = 2.1 + log [0.75 / 0.25] = 2.58
so the pH will be in between 2.1 to 7.2
Answer:
E
Explanation:
Why can a signaling molecule cause different responses in different cells? Different cells have membrane receptors that bind to different sides of the signaling molecule. The transduction process is unique to each cell type; to respond to a signal, different cells require only a similar membrane receptor
Answer:
"500 Joule/sec" is the right answer.
Explanation:
The given values are:
Force,
F = 1000 N
Velocity,
s = 10 m
Time,
t = 20 s
Now,
The power will be:
= 
On putting the values, we get
= 
= 
= 
Its b Fe(s) <span> Fe</span>2+(aq) + 2e– <span><span> </span>E</span><span> = </span><span>+0.44 V</span>
Answer:
Part A: 36 MBq; Part B: 18 MBq
Explanation:
The half-life is the time it takes for half the substance to disappear.
The activity decreases by half every half-life
A =Ao(½)^n, where n is the number of half-lives.
Part A
3.0 da = 1 half-life
A = Ao(½) = ½ × 72 MBq = 36 MBq
Part B
6.0 da = 2 half-lives
A = Ao(½)^2 = ¼ × 72 MBq = 18 MBq