Answer:
E = 13.2 kWh
, Cost = $ 10.8
Explanation:
We can look for the consumed energy from the expression of the power
P = W / t
The work is equal to the variation of the kinetic energy, for which
P = E / t
E = P t
look for the energy consumed in one day and multiply by the days of the month in the month
E = 110 4 30
E = 13200 W h
E = 13.2 kWh
the cost of this energy is
Cost = 0.9 12
Cost = $ 10.8
Answer:
≅50°
Explanation:
We have a bullet flying through the air with only gravity pulling it down, so let's use one of our kinematic equations:
Δx=V₀t+at²/2
And since we're using Δx, V₀ should really be the initial velocity in the x-direction. So:
Δx=(V₀cosθ)t+at²/2
Now luckily we are given everything we need to solve (or you found the info before posting here):
- Δx=760 m
- V₀=87 m/s
- t=13.6 s
- a=g=-9.8 m/s²; however, at 760 m, the acceleration of the bullet is 0 because it has already hit the ground at this point!
With that we can plug the values in to get:




C it is the energy required to break existing chemical bonds, it is the amount of energy that a reaction requires in order for the reactants to successfully collide and react
Answer:
The linear velocity is 
Explanation:
According to the law of conservation of energy
The potential energy possessed by the hoop at the top of the inclined plane is converted to the kinetic energy at the foot of the inclined plane
The kinetic energy can be mathematically represented as

Where
is the moment of inertia possessed by the hoop which is mathematically represented as
Here R is the radius of the hoop
is the angular velocity which the hoop has at the bottom of the lower part of the inclined plane which is mathematically represented as

Where v linear speed of the hoop's center of mass just as the hoop leaves the incline and rolls onto a horizontal surface
Now expressing the above statement mathematically


=>
=> 
=> 
=> 
Substituting values

