Answer:
Push - The most common form of force is a push through physical contact (like a lawnmower or shopping cart)
Pull - You can apply a force by directly pulling on an object (like pulling a wagon)
Explanation:
Explanation:
(a) Draw a free body diagram of the cylinder at the top of the loop. At the minimum speed, the normal force is 0, so the only force is weight pulling down.
Sum of forces in the centripetal direction:
∑F = ma
mg = mv²/RL
v = √(g RL)
(b) Energy is conserved.
EE = KE + RE + PE
½ kd² = ½ mv² + ½ Iω² + mgh
kd² = mv² + Iω² + 2mgh
kd² = mv² + (m RC²) ω² + 2mg (2 RL)
kd² = mv² + m RC²ω² + 4mg RL
kd² = mv² + mv² + 4mg RL
kd² = 2mv² + 4mg RL
kd² = 2m (v² + 2g RL)
d² = 2m (v² + 2g RL) / k
d = √[2m (v² + 2g RL) / k]
Explanation:
Unclear question. The clear rendering reads;
"Into a U-tube containing mercury, pour on the other side sulfuric acid of density 1.84 and on the other side alcohol of density 0.8 so that the levels are in the same horizontal plane. The height of the acid above the mercury being 24 cm. What is the height of the bar and what variation of the level of the acid, when the mercury density is 13.6?
Answer:
They decrease trauma by allowing for a more gradual change in velocity
Explanation: