Suppose object A<span> is a cue ball and object </span>B<span> is an eight ball on a pool table. If the cue ball strikes the eight ball, the cue ball exerts a force on the eight ball that sends it rolling toward the pocket. At the same time, the eight ball exerts an equal and opposite force on the cue ball that brings it to a stop. Note that both the cue ball and the eight ball each experience a change in momentum. However, the sum of the momentum of the cue ball and the momentum of the eight ball remains constant throughout.</span>
if a volume of air is warmed it expands due to increased translational kinetic energy as it expands it will start to cool.
<h3>When does temperature increase volume?</h3>
We can then conclude that at constant pressure, temperature and volume are directly proportional: temperature increases, volume increases; decrease temperature, decrease volume.
In this case, the higher the temperature, the greater the kinetic energy that acts on the molecules of this gas, so when the gas expands, these molecules find more space and collide less, which will cause the gas to cool.
See more about volume at brainly.com/question/1578538
#SPJ12
solution:
E\delta =\frac{R}{\epsilon0}(1-\frac{A}{\sqrt{4R^{2}}-ac}
=\frac{R}{\epsilon0}(1-\frac{1}{\sqrt{4r^{2}/^{_a{2}}+1}})
=\frac{R}{\epsilon0}(1-\frac{1}{\sqrt{4x^2+1}})
x=\frac{r}{a}
infinite case,
Ei=\frac{r}{\epsilon0}
\therefore e\delta =ei(1-\frac{1}{\sqrt{4x^{2}+1}})
we have to find x when,
ei-e\delta =1% ,y=ei=1/100 ei
or,ei-ei+\frac{ei}{\sqrt{4x^2+1}} = 1/100ei
\frac{1}{\sqrt{4x^2+1}}=\frac{1}{100}
4x^2+1 =10^4
x=\frac{\sqrt{\frac{10^4-1}{4}}}=49.99\approx 50
\therefore \frac{r}{a}\approx 50
Answer:
walking to school
Explanation:
Driving a car to school
, and taking the bus to school both take up energy, unlike walking to school.
unless ur talking about energy, counting energy you produce and use to complete things, then it would be the 3rd one, taking the bus to school.
Answer:
The speed is 15 km/h or 4.16 m/s.
Explanation:
A boat travels the distance that separates Gran Canaria from Tenerife (90 km) in 6 hours. Which the speed of the boat in km / h? And in m / s?
Given that,
Distance, d = 90 km = 90000 m
Time, t = 6 hours = 21600 s
Speed = distance/time

or

So, the required speed is 15 km/h or 4.16 m/s.