Explanation:
The object is moving along the parabola y = x² and is at the point (√2, 2). Because the object is changing directions, it has a centripetal acceleration towards the center of the circle of curvature.
First, we need to find the radius of curvature. This is given by the equation:
R = [1 + (y')²]^(³/₂) / |y"|
y' = 2x and y" = 2:
R = [1 + (2x)²]^(³/₂) / |2|
R = (1 + 4x²)^(³/₂) / 2
At x = √2:
R = (1 + 4(√2)²)^(³/₂) / 2
R = (9)^(³/₂) / 2
R = 27 / 2
R = 13.5
So the centripetal force is:
F = m v² / r
F = m (5)² / 13.5
F = 1.85 m
When object travels with uniform velocity, no force acts on it. hence , yes.
Answer:
true , I searched and got u the answer
C. Patient info, name of med, dosage & route, special instructions, prescriber’s DEA#, and number of refills
The final temperature of the system is 32.5°
we know, H = mcT
where, H = Heat content of the body
m = Mass,
c = Specific heat
T = Change in temperature
According to to the Principle of Calorimetry
The net heat remains constant i.e.
⇒ the heat given by water = heat accepted by the aluminum container.
⇒ 330 x 1 x (45 - T) = 855 x

x (T - 10)
⇒ 14,850 - 330T = 183.21T - 1832
⇒ - 513.21 T = - 16682
or T = 32.5°