Newton's third law of motion
Explanation:
Newton's third law of motion states that:
<em>"When an object A exerts a force on an object B (action force), then object B exerts an equal and opposite force (reaction force) on object A"</em>
It is important to note that this law is always valid, even when it seems it is not.
Consider for example the gravitational force that the Earth exerts on your body (= your weight). We can say that this is the action force. It may seems that there is no reaction force in this case. However, this is not true: in fact, your body also exerts an equal and opposite force on the Earth, and this is the reaction force. The reason that explains why we don't notice any effect on Earth due to this force is that the mass of the Earth is much larger than your mass, therefore the acceleration produced on the Earth because of the force you apply is negligible.
It is also important to note that the action-reaction pair of forces always act on two different objects, so they never appear in the same free-body diagram.
Learn more about Newton's third law of motion:
brainly.com/question/11411375
#LearnwithBrainly
Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.
Answer:
<h3>Power = Work Done/time</h3>
=> Power = 60×10×10/60
=> Power = 6000/60
=> Power = 100 Watt
Hence the power output of a pump is 100 Watts.
Answer:
All the three quantities will have non zero joules.
Explanation:
At the initial position of rest the system will have only gravitational potential energy while the other 2 quantities will be zero.
when the system reaches a height (y-h) only kinetic energy will be zero while the other 2 quantities will be non zero
At the position of (y-h/2) all the 3 quantities will be non zero.