I use the impulse momentum formula.
the 4.0 kilogram ball requires more force to stop
Answer:
a)
b)S= 46.4 cm
Explanation:
Given that
Velocity = 16 Km/s
V= 16,000 m/s
E= 27 mV/m
E=0.027 V/m
d= 22.5 cm
d= 0.225 m
a)
lets time taken by electron is t
d = V x t
0.225 = 16,000 t

b)
We know that
F = m a = E q ------------1
Mass of electron ,m

Charge on electron

So now by putting the values in equation 1




Here initial velocity u= 0 m/s

S=0.464 m
S= 46.4 cm
S is the deflection of electron.
Answer:
29.4m/s
Explanation:
Given parameters:
Time = 3s
Unknown:
Average velocity = ?
Solution:
To solve this problem, we use the expression below:
v = u + gt
v is the average velocity
u is the initial velocity = 0m/s
g is the acceleration due to gravity = 9.8m/s²
t is the time
So;
v = 0 + (9.8 x 3) = 29.4m/s
Answer:

Explanation:
information we know:
Total force: 
Weight: 
distance: 
vertical component of the force: 
-------------
In this case we need the formulas to calculate the components of the force (because to calculate the work we need the horizontal component of the force).
horizontal component: 
vertical component: 
but from the given information we know that 
so, equation these two
and 

and we know the force
, thus:

now we clear for 

the angle to the horizontal is 15.466°, with this information we can calculate the horizontal component of the force:


whith this horizontal component we calculate the work to move the crate a distance of 4 m:

the work done is W=173.48J
Answer:
Explanation:
Given
mass of box 
speed of box 
distance moved by the box 
coefficient of kinetic friction 
Friction force 


Kinetic Energy of box will be utilize to overcome friction and rest is stored in spring in the form of elastic potential energy



