Answer:
Part a)

Part b)

Part C)

Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Explanation:
Part a)
As we know that car A moves by distance 6.1 m after collision under the frictional force
so the deceleration due to friction is given as



now we will have




Part b)
Similarly for car B the distance of stop is given as 4.4 m
so we will have


Part C)
By momentum conservation we will have



Part d)
Due to large magnitude of friction between road and the car the momentum conservation may not be valid here as momentum conservation is valid only when external force on the system is zero.
Answer:
Newton
Explanation:
The SI unit of force is the newton, symbol N. The base units relevant to force are: The metre, unit of length — symbol m. The kilogram, unit of mass — symbol kg.
Answer:
2000 miles.
Explanation:
It's the Colorado scale model, in which sun is taken as the grapefruit and the distances are measured for different planets with respect to sun just for understanding.
Answer:
The surface gravity g of the planet is 1/4 of the surface gravity on earth.
Explanation:
Surface gravity is given by the following formula:

So the gravity of both the earth and the planet is written in terms of their own radius, so we get:


The problem tells us the radius of the planet is twice that of the radius on earth, so:

If we substituted that into the gravity of the planet equation we would end up with the following formula:

Which yields:

So we can now compare the two gravities:

When simplifying the ratio we end up with:

So the gravity acceleration on the surface of the planet is 1/4 of that on the surface of Earth.