Answer:
8239.2g
Explanation:
Given parameters:
Number of atoms in Br = 6.2 x 10²⁵atoms
Unknown:
Mass of Br = ?
Solution:
From mole concepts, we know that:
1 mole of a substance contains 6.02 x 10²³ atoms/mol
Molar mass of Br = 80g/mol
6.2 x 10²⁵atoms x
x 80 x
= 8239.2g
Answer:
d. The gold(III) ion is most easily reduced.
Explanation:
The standard reduction potentials are
Au³⁺ + 3e⁻ ⟶ Au; 1.50 V
Hg²⁺ + 2e⁻ ⟶ Hg; 0.85 V
Zn²⁺ + 2e⁻ ⟶ Zn; -0.76 V
Na⁺ + e⁻ ⟶ Na; -2.71 V
A <em>more positive voltage</em> means that there is a <em>stronger driving force</em> for the reaction.
Thus, Au³⁺ is the best acceptor of electrons.
Reduction Is Gain of electrons and, Au³⁺ is gaining electrons, so
Au³⁺ is most easily reduced.
Remember that a cation will be smaller than its neutral atom, and an anion will be larger than its neutral atom. This would automatically eliminate answer choices A and D.
Also keep in mind that atomic radii decreases from left to right as you move along a periodic table. It also decreases from bottom up.
Atomic radii increases as you move from right to left and as you go from up to down.
As bromine is higher up in the periodic table than Iodine, it would have a smaller radius. Iodine would have a larger radius.
The correct answer is B. Br
Answer:
I would recommend them becoming an Analytical Chemist because Analytical Chemists examine and identify various elements and compounds to find out the composition, structure, and nature of substances and they determine the concentration of chemical pollutants in soil, water,and air. I would recommend taking inorganic, organic, analytical, and physical chemistry as well as computer science, physics, and environmental science
<span>The answer should be false, because mass should not have to do with how bright a star is
</span>