Since volume and temperature are constant, this means that pressure and <u>number of moles</u> are <u>directly </u>proportional. the sample with the largest <u>number of moles</u> will have the <u>high </u>pressure.
Since, the ideal gas equation is also called ideal gas law. So, according to ideal gas equations,
PV = nRT
- P is pressure of the sample
- T is temperature
- V is volume
- n is the number of moles
- R is universal gas constant
At constant volume and temperature the equation become ,
P ∝ nR
since, R is also constant. So, conclusion of the final equation is
P ∝ n
The number of moles and pressure of the sample is directly proportion. So, on increasing number of moles in the sample , pressure of the sample also increases.
learn about ideal gas law
brainly.com/question/4147359
#SPJ4
Answer:
No hay resultados para ACFrOgDjZVP5d1mO2l6HAtPZQNnbFRq674g04E7uZadqJMPc4VbhdTIEDCWBeh3xfw9BrKkfHHEN4nxe9NVglsb9N8D49CjxvxHYw3L93m4wO6SY5SwKQYMk-2zzHtGzerun1Uh9k-mpxFw9D3I1.pdf
Explanation:
hablemos por g mail
Answer:
mass of HCl = 3.65 g
Explanation:
Data Given:
Moles of hydrochloric acid HCl = 0.1 mole
Mass in grams of hydrochloric acid HCl = ?
Solution:
Mole Formula
no. of moles = Mass in grams / molar mass
To find Mass in grams rearrange the above Formula
Mass in grams = no. of moles x molar mass . . . . . . . (1)
Molar mass of HCl = 1 + 35.5 = 36.5 g/mol
Put values in equation 1
Mass in grams = 0.1 mole x 36.5 g/mol
Mass in grams = 3.65 g
mass of HCl = 3.65 g
Answer is: sodium (Na) and iodine (I₂).
<span>
First ionic bonds in this salt are separeted
because of heat:
</span>NaI(l) → Na⁺(l) + I⁻(l).
Reaction of reduction
at cathode(-): Na⁺(l) + e⁻ → Na(l) /×2.
2Na⁺(l) + 2e⁻ → 2Na(l).
Reaction of oxidation
at anode(+): 2I⁻(l) → I₂(l) + 2e⁻.
The anode is positive
and the cathode is negative.