D is incredibly biased and is a leading question, and overall it is a poor excuse for any sort of unbiased surveying.
Answer:
A) continue to move to the right, with its speed increasing with time.
Explanation:
As long as force is positive , even when it is decreasing , it will create positive increase in velocity . Hence the body will keep moving with increasing velocity towards the right . The moment the force becomes zero on continuously decreasing , the increase in velocity stops and the body will be moving with the last velocity uniformly towards right . When the force acting on it becomes negative , even then the body will keep on going to the right till negative force makes its velocity zero . D uring this period , the body will keep moving towards right with decreasing velocity .
Hence in the present case A , is the right choice.
Answer:
Yes
Explanation:
In a third-class lever, the effort force lies between the resistance force and the fulcrum. Some kinds of garden tools are examples of third-class levers. When you use a shovel, for example, you hold one end steady to act as the fulcrum, and you use your other hand to pull up on a load of dirt.
Answer:
a)
, b) 
Explanation:
a) The final velocity of the 13.5 g coin is found by the Principle of Momentum Conservation:

The final velocity is:

b) The change in the kinetic energy of the 13.5 g coin is:
![\Delta K = \frac{1}{2}\cdot (13.5\times 10^{-3}\,kg)\cdot \left[(11.9\times 10^{-2}\,\frac{m}{s} )^{2}-(0\,\frac{m}{s} )^{2}\right]](https://tex.z-dn.net/?f=%5CDelta%20K%20%3D%20%5Cfrac%7B1%7D%7B2%7D%5Ccdot%20%2813.5%5Ctimes%2010%5E%7B-3%7D%5C%2Ckg%29%5Ccdot%20%5Cleft%5B%2811.9%5Ctimes%2010%5E%7B-2%7D%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D-%280%5C%2C%5Cfrac%7Bm%7D%7Bs%7D%20%29%5E%7B2%7D%5Cright%5D)
