Answer:
the initial velocity of the ball is 104.67 m/s.
Explanation:
Given;
angle of projection, θ = 60⁰
time of flight, T = 18.5 s
let the initial velocity of the ball, = u
The time of flight is given as;

Therefore, the initial velocity of the ball is 104.67 m/s.
Answer:
light
Explanation:
Light is part of a spectrum of electromagnetic energy that includes radio waves, microwaves, infrared radiation, visible light, ultraviolet "light", x rays, and gamma rays.
Answer:
Potential Energy = 294J, Kinetic Engergy = 48.02J
Explanation:
We have these formulas:
Potential Energy = mass * gravitational force * height (m) = 1 * 9.8 * 30 = 294(J)
Kinetic Energy = 1/2 * mass * velocity^2 = 1/2 * 1 * 9.8^2 = 48.02 (J)
As the rock falling at an acceleration of 9.8m/s^2 which means for each second, the rock increases 9.8m/s. I think we are missing time to find the instantaneous velocity, the formula is (initial displacement - final displacement)/ (initial time - final time) which will directly give the final answer for you.
Answer:
t = 1.099 s
Explanation:
given,
constant speed = 2.51 m/s
height of balloon above ground = 3.16 m
time elapsed before it hit the ground = ?
Applying equation of motion to the compass



using quadratic formula to solve the equation


t = 1.099 s, -0.586 s
hence, the time elapses before the compass hit the ground is equal to 1.099 s.
ANSWER:
250 J
STEP-BY-STEP EXPLANATION:
F = 20N is required to stretch the spring by 4 meters
We know that the force is equal to:

We solve for k (spring constant):

The work done in stretching the spring is given by the following equation (in this case the stretch is 10 meters:

The work required is 250 joules.