Answer:
a)
b)
c)
d)
e)
Explanation:
Given that:
- initial speed of turntable,

- full speed of rotation,

- time taken to reach full speed from rest,

- final speed after the change,

- no. of revolutions made to reach the new final speed,

(a)
∵ 1 rev = 2π radians
∴ angular speed ω:

where N = angular speed in rpm.
putting the respective values from case 1 we've


(c)
using the equation of motion:

here α is the angular acceleration



(b)
using the equation of motion:





(d)
using equation of motion:



(e)
using the equation of motion:



Answer:
434 Hz
Explanation:
According to the Doppler effect, when a source of a wave is moving towards an observer at rest, then the observer will observe an apparent frequency which is higher than the original frequency of the source.
In this situation, Tina is driving towards Rita. Tina is the source of the sound wave (the horn), while RIta is the observer. Since the original frequency of the sound is 400 Hz, Rita will hear a sound with a frequency higher than this value.
The only choice which is higher than 400 Hz is 434 Hz, so this is the frequency that Rita will hear.
C and c infeijnveirnvinefine
Answer:
112.58
Explanation:
The Coefficient of Performance of any system is denoted by COP=Q/W, where Q is the useful heat supplied or removed and W is the work required by the system. According to the first law of thermoddynamics Qh= Qc + W, where Qh is the heat transfered to the hot reservoir and Qc is the heat collected from the cold reservoir. Substituting the values for W and apllying the limitation for maximum theoretical efficiency we end up with the eqution shown below.
The Coefficient of Performance of air conditioner or COP is denoted by
COP(cool) = Tc/(Th- Tc)
where Tc: the lowest temperature
Th: the highest temperature
converting the values to Kelvin and adding them in the above equation
COP(cool) = (25+273)/((34+273)-(25+273))
= 298/(307-298)
= 298/9 = 33.11
From the question, it is stated that COP=SEER/3.4
hence, SEER= COP * 3.4
SEER= 33.11 * 3.4 = 112.58
Answer:
Motion
Explanation:
Newton's first law is motion