KOH is a strong base and HBr is a strong acid and completely dissociates.
The balanced equation for the reaction is;
KOH + HBr ---> KBr + H₂O
Stoichiometry of acid to base is 1:1
The number of KOH moles reacted - 0.50 M / 1000 mL/L x 48.0 mL = 0.024 mol
number of HBr moles reacted - 0.25 M/ 1000 mL/L x 96.0 mL = 0.024 mol
the number of H⁺ ions are equal to number of OH⁻ ions.
Then the solution is neutral.
pH of neutral solutions at 25 °C is 7.
Therefore pH is 7
Answer:
107.8682 u would be the answer
Explanation:
Answer:
complex
Explanation:
becaause it fits in the words equation I hoped i helped
Answer:
=1.666 liters
Explanation:
1 mole of a has at standard temperature and pressure occupies a volume of 22.4 liters.
0.5 moles of nitrogen occupy a volume of (0.5 moles×22.4 dm³/mol)/ 1
=11.2 liters.
Standard pressure= 1 atmosphere (Atm)
Standard temperature = 273.15 Kelvin
According to Combined gas equation, P₁V₁/T₁=P₂V₂/T₂
Let us take the conditions under standard conditions as the reference, with the subscript 1 and the conditions under the 5L container to be scenario 2 with subscript 2.
Therefore P₂ =P₁V₁T₂/T₁V₂
Substituting for the values we get:
P₂= (1 atm× 11.2L ×203K)/ (273K×5L)
=1.666 atm
The change in internal energy of the combustion of biphenyl in Kj is calculated as follows
=heat capacity of bomb calorimeter x delta T where delta T is change in temperature
delta T = 29.4 -25.8= 3.6 c
= 5.86 kj/c x 3.6 c = 21.096 kj