(1) MO₂(s) + C(s) → M(s) + CO₂ (g), ΔG₁ = 288.9 kJ/mol
(2) C(s) + O₂(g) → CO₂(g), ΔG₂ = -394.4 kJ/mol
By adding both equations 1 + 2 we get the coupled reaction:
MO₂(s) + 2 C(s) + O₂(g) → M(s) + 2 CO₂(g)
ΔG⁰ = ΔG₁ + ΔG₂
= 288.9 + (-394.4) = -105.5 kJ/mol = -105500 J/mol
Temperature T = 25 + 273.15 = 298.15 K
Molar gas constant R = 8.314 J/mol.K
K =

=
= 3.05 x 10¹⁸
Answer:
The correct answer is -all of the above.
Explanation:
Muscle fatigue is a reduced ability in work capacity caused by work itself. It is known that altering oxygen is contracting skeletal muscle affects performance. Reduced O2 supply increases the rate of muscle fatigue.
The lactic acid is accumulated as it forms rapidly but the breaking of the lactic acid is slow down, which causes muscle fatigue. Less ATP and glycogen in muscle results in fatigue as the muscle is not able to generate energy to power contractions and therefore contributes to muscle fatigue.
Answer:
When n = 1, the reaction is of the First Order
Explanation:
Find attach the solution
Answer:
T₂ = 150 K
Explanation:
Given data:
Initial volume = 4 L
Initial temperature = 300 K
Final volume = 2 L
Final temperature = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
T₂ = T₁V₂/V₁
T₂ = 300 K × 2L / 4 L
T₂ = 600 L.K / 4 L
T₂ = 150 K