Answer:
water helps u a lot
Explanation:
water vaper is gas that rises up into the air
Use the Heat formula for both problems.
q=m*c*∆t
Where
q= heat in Joules
m= mass in grams
c= specific heat which is a constant 4.18
∆t= change in temperature
Explanation:
(A)role of nittogen fixing bacteria
=Nitrogen-fixing bacteria, microorganisms capable of transforming atmospheric nitrogen into fixed nitrogen (inorganic compounds usable by plants). More than 90 percent of all nitrogen fixation is effected by these organisms, which thus play an important role in the nitrogen cycle.
B)role of nitrifying bacteria
=Nitrifying bacteria convert the most reduced form of soil nitrogen, ammonia, into its most oxidized form, nitrate. In itself, this is important for soil ecosystem function, in controlling losses of soil nitrogen through leaching and denitrification of nitrate.
C)role of denitrifying bacteria
=Denitrifying bacteria converts nitrates back to nitrogen gas.
Answer:
The relative conjugate acids and bases are listed below:
CH3NH2 → CH3NH3+
H2SO3→ HSO3-
NH3→ NH4+
Explanation:
In a Brønsted-Lowry acid-base reaction, a conjugate acid is the species resulting from a base accepting a proton; likewise, a conjugate base is the species formed after an acid has donated a hydrogen atom (proton).
To this end:
- HSO3- is the conjugate acid of H2SO3 i.e sulfuric acid has lost a proton (H+)
- NH4+ is the conjugate acid of NH3 i.e the base ammonia has gained a proton (H+)
- OH- is the conjugate base of H20
- CH3NH3+ is the conjugate base of the base CH3NH2 methylamine
Answer:
280 g
Explanation:
Let's consider the decomposition of ammonium nitrate.
NH₄NO₃(s) ⇒ N₂(g) + 0.5 O₂(g) + 2 H₂O(g)
We can establish the following relations:
- The molar mass of NH₄NO₃ is 80.04 g/mol.
- The molar ratio of NH₄NO₃ to N₂ is 1:1.
- The molar mass of N₂ is 28.01 g/mol.
The mass of N₂ produced when 800 g of NH₄NO₃ react is:
