Answer:
V = 0.0327 L.
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the liters of C3H6O by the definition of density. We can tell the density of this substance as that of acetone (0.784 g/mL) and therefore calculate the liters as shown below:

Regards!
Answer:
Explanation:
The air 9% mole% methane have an average molecular weight of:
9%×16,04g/mol + 91%×29g/mol = 27,8g/mol
And a flow of 700000g/h÷27,8g/mol = 25180 mol/h
In the reactor where methane solution and air are mixed:
In = Out
Air balance:
91% air×25180 mol/h + 100% air×X = 95%air×(X+25180)
Where X is the flow rate of air in mol/h = <em>20144 mol air/h</em>
<em></em>
The air in the product gas is
95%×(20144 + 25180) mol/h = 43058 mol air× 21%O₂ = 9042 mol O₂ ×32g/mol = <em>289 kg O₂</em>
43058 mol air×29g/mol <em>1249 kg air</em>
Percent of oxygen is:
=<em>0,231 kg O₂/ kg air</em>
<em></em>
I hope it helps!
Energy from the sun that is neither reflected nor absorbed by the atmosphere passes through the atmosphere to the surface. The ozone layer absorbes most of the ultraviolet radiation, water vapor, and carbon dioxide absorbs infared radiation, clouds, dust, and other gases also absorb energy.
The structure of the alkyl bromides used in a malonic ester synthesis of ethyl 2-methyl-4-pentenoate are as drawn in the attached image.
<h3>Ethyl 2-methyl-4-pentenoate by Malonic ester synthesis.</h3>
The malonic ester synthesis is a chemical reaction characterized by the alkylation of diethyl malonate or a similar ester of malonic acid at the carbon alpha (directly adjacent) to both carbonyl groups, and subsequently converted to a substituted acetic acid.
Hence, it follows from the structure of Ethyl 2-methyl-4-pentenoate that the alkyl bromides used are Ethyl bromide and methyl bromide.
Read more on Malonic ester synthesis;
brainly.com/question/17237043