pH of buffer can be calculated as:
pH=pKa+log[salt]/[Acid]
As ka = 4.58 x 10-4
Concentration of [Salt] that is NO2(-1)=0.380M
Concentration of [Acid] that is HNO2=0.500M
So, pH= -log(4.58*10^-4)+log((0.380)/0.500))
=3.21
So pH of solution will be 3.21
Answer:
100 g
Explanation:
From the question given above, the following data were obtained:
Original amount (N₀) = 400 g
Time (t) = 4 years
Half-life (t½) = 2 years
Amount remaining (N) =?
Next, we shall determine the number of half-lives that has elapse. This can be obtained as follow:
Time (t) = 4 years
Half-life (t½) = 2 years
Number of half-lives (n) =?
n = t / t½
n = 4 / 2
n = 2
Thus, 2 half-lives has elapsed.
Finally, we shall determine the amount remaining of the radioactive isotope. This can be obtained as follow:
Original amount (N₀) = 400 g
Number of half-lives (n) = 2
Amount remaining (N) =?
N = 1/2ⁿ × N₀
N = 1/2² × 400
N = 1/4 × 400
N = 0.25 × 400
N = 100 g
Thus, the amount of the radioactive isotope remaing is the 100 g.
<span>Nitrogen gas is converted to nitrate compounds by nitrogen-fixing bacteria in soil turns nitrogen gas into root nodules. Nitrogen is the most commonly limiting nutrient in plants. Legumes use nitrogen fixing bacteria, specifically symbiotic rhizobia bacteria, within their root nodules to counter the limitation.</span>
Answer:
the range should be 2.2 to 4.3
Explanation:
I think so because the numbers at the left side of the scale from 1 are more acidic so as it increases it's still acidic but lesser so 1 is more acidic than 2 so I used 2.2 as the beginning of the range because it's less acidic than A even though its a greater number and 4.3 is lesser than 4.4 but its still greater on the scale. frankly speaking I don't feel so correct because it's in decimal so try and compare facts thank you
35°c is equal to 95°f
To do this multiply 35 and 1.8
35 x 1.8=63
Now add 32
Resulting in the answer 95
(The equation for to solve for c and f is c1.8+32=f