Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
Answer:
the general equation is: A + X → AX. Where a single compound on the reactant side breaks down into two or more products during a chemical change. The general equation is AX → A + X.
Explanation:
There are 6.33 × 10²⁵ hydrogen atoms in this solution in total.
<h3>Explanation</h3>
- There are two hydrogen atoms in each water
molecule. - There are three hydrogen atoms in each ammonia
molecule.
2.10 × 10²⁵ water molecules and 7.10 × 10²⁴ ammonia molecules will contain
hydrogen atoms in total.
Answer:
In general an acid reacts with a carbonate or hydrogen-carbonate to produce a salt, carbon dioxide gas and water.
Answer: 40mm
Explanation:
You would multiply 4.0 by 10.