Answer:
11.6 mol O₂
Explanation:
- C₇H₁₆ + 11 O₂ → 7 CO₂ + 8 H₂O
In order to solve this problem we need to <u>convert moles of carbon dioxide (CO₂) into moles of oxygen gas (O₂)</u>. To do so we'll use a conversion factor containing the <em>stoichiometric coefficients</em> of the balanced reaction:
- 7.4 mol CO₂ *
= 11.6 mol O₂
To insert a thermometer into an adapter, use <u>mineral oil</u> to prepare the thermometer. Then, hold the thermometer <u>close to</u> the adapter and<u> slowly turn</u> the thermometer into the adapter.
The term "temperature" refers to a measurement of how cold or hot an actual physical object is. It is measured with a thermometer, which gives readings in Celsius, Kelvin, and Fahrenheit (°C, K, and °F).
The average kinetic energy of the particles in a given substance is often measured by temperature. A thermometer is a tool used to gauge a substance's or a body's temperature (degree of hotness or coolness). It is a bulb-shaped piece of thin glass that usually contains either coloured alcohol or mercury.
In order to get readings throughout the distillation process, a thermometer adapter is used with a temperature probe. Use mineral oil to prepare or make the thermometer suitable before inserting it into the adapter. After that, slowly insert the thermometer into the adaptor while holding it close to it.
Learn more about thermometer:
brainly.com/question/2339046
#SPJ4
K₃PO₄ → 3K⁺ (aq) + PO₄³⁻(aq)
One mole of PO₄³⁻ ion gets dissociated from one mole of K₃PO₄
As per the definition of Avogadro's number, 1 mole = 6.022 x 10²³ ions
One mole of PO₄³⁻ ions x (6.022 x 10²³ ions/ 1 mole of PO₄³⁻ ions )
= 6.022 x 10²³ ions
Therefore , there are 6.022 x 10²³ PO₄³⁻ ions in a mole of K₃PO₄.
B because A is for radios of course and C is thermal energy and D is radioactive
i. The dissolution of PbSO₄ in water entails its ionizing into its constituent ions:

---
ii. Given the dissolution of some substance
,
the Ksp, or the solubility product constant, of the preceding equation takes the general form
.
The concentrations of pure solids (like substance A) and liquids are excluded from the equilibrium expression.
So, given our dissociation equation in question i., our Ksp expression would be written as:
.
---
iii. Presumably, what we're being asked for here is the <em>molar </em>solubility of PbSO4 (at the standard 25 °C, as Ksp is temperature dependent). We have all the information needed to calculate the molar solubility. Since the Ksp tells us the ratio of equilibrium concentrations of PbSO4 in solution, we can consider either [Pb2+] or [SO4^2-] as equivalent to our molar solubility (since the concentration of either ion is the extent to which solid PbSO4 will dissociate or dissolve in water).
We know that Ksp = [Pb2+][SO4^2-], and we are given the value of the Ksp of for PbSO4 as 1.3 × 10⁻⁸. Since the molar ratio between the two ions are the same, we can use an equivalent variable to represent both:

So, the molar solubility of PbSO4 is 1.1 × 10⁻⁴ mol/L. The answer is given to two significant figures since the Ksp is given to two significant figures.