Answer:
a) Team A will win.
b) The losing team will accelerate towards the middle line with 0.01 m/
Explanation:
Given that Team-A pulls with a force , 
and Team-B pulls with a force , 
∵ 
The rope will move in the direction of force
.
∴ Team-A will win.
b) Considering both the teams as one system of total mass , 
Net force on the system ,
= 50-45 = 5N
Applying Newtons first law to the system ,
F = ma , where 'a' is the acceleration of the system.
Since , both the teams are connected by the same rope , their acceleration would be the same.
∴ 5 = 499×a
∴ a = 0.01 m/
<span>Th find the average speed of a trip we need to dived the total distance by the total time.
Let's find the total distance d.
d = (300 mi/h)(2.00 h) + 750 miles
d = 600 miles + 750 miles
d = 1350 miles
The total distance is 1350 miles
Let's find the total time t.
t = 2.00 hours + (750 mi / 250 mi/h)
t = 2.00 hours + 3.00 hours
t = 5.00 hours
The total time of the trip is 5.00 hours.
We can find the average speed.
d / t = 1350 miles / 5.00 hours
d / t = 270 miles/ hour
The average speed of the trip is 270 mi/h
(Note that the direction does not matter when we find the average speed.)</span>
Answer:
B. Ecosystem B, because its high species diversity could have resulted from increased competition among its members.
Explanation:
This is because, in the ecosystem with varying level of biodiversity, Ecosystem B has medium level of species diversity found in them with High medium level of habitat diversity which causes increasing competitions among them.