The outer rigid layer of the earth is divided into a couple of dozen “plates” that move around across earths surface relative to each other.
Answer:
7066kg/m³
Explanation:
The forces in these cases (air and water) are: Fa =mg =ρbVg Fw =(ρb −ρw)Vg where ρw = 1000 kg/m3 is density of water and ρb is density of the block and V is its density. We can find it from this two equations:
Fa /Fw = ρb / (ρb −ρw) ρb = ρw (Fa /Fa −Fw) =1000·(1* 21.2 /21.2 − 18.2)
= 7066kg/m³
Explanation:
Explanation:
As the given spheres are connected by a thin wire so, the potential on the spheres are the same.
......... (1)
Hence, total charge will be as follows.
= Q = -95.5 nC .......... (2)
Using the above two equations, the final equation will be as follows.

and, 
Hence, we will calculate the charge on sphere B after the equilibrium is reached as follows.

= 
= 82.714 nC
Thus, we can conclude that the charge on sphere B after equilibrium has been reached is 82.714 nC.
Answer:
Explanation:
When we apply a horizontal force of 76 N to a block, the block moves across the floor at a constant speed. So net force on the block is zero .
It implies that a force ( frictional ) acts on it which is equal to 76 N in opposite direction ( friction )
When we apply a greater force on it it starts moving with acceleration .
This time kinetic friction acts on it due to rough ground equal to 76 N .This is limiting friction ( maximum friction )
Net force on the body in later case
= 89 - 76
= 13 N
Force by ground on the block in horizontal direction = 76 N ( FRICTIONAL FORCE )
=
Explanation:
Given that,
Capacitor 
Resistor 
Peak voltage = 5.10 V
(A). We need to calculate the crossover frequency
Using formula of frequency

Where, R = resistor
C = capacitor
Put the value into the formula


(B). We need to calculate the
when 
Using formula of 

Put the value into the formula


(C). We need to calculate the
when 
Using formula of 


(D). We need to calculate the
when 
Using formula of 


Hence, This is the required solution.