The calculation for such a question can be achieved via Avogadro hypothesis
We know molar mass of CO2 is 44g/mole which is the sum of atomic masses i.e; C and 2 oxygen atoms
Molar mass of CO2 =12(C)+2*16(O) = 44 g/mole will contain 6.023 ※10^23 CO2 molecules ..
44g/mole = 6.023 ※10^23 CO2 molecules
=> 1g = (6.023/44) ※10^23 CO2 molecules
==> 8.80g = 8.80(6.023÷44)10^23 = 1.2046 ※10^23 molecules of CO2….
Thus there r 1.2046 ※10^23 molecules of CO2 in 8.80g
if u need to calculate no. of carbon atoms then multiply result by 1 and if u need no of oxygen atoms in 8.80g of co2 then multiply the result by 2 ….
You mean physical science?
Answer:
no. of water molecules associated to each molecule of
= 4
Explanation:
Mass of
before heating = 19.8 g
Mass of
after heating = 12.6 g
Difference in mass of
before and after heating
= 19.8 - 12.6 = 7.2 g
Difference in mass corresponds to mass of water driven out.
Molar mass of water = 18 g/mol
No. of moles of water = 
Mass of
obtained after heating is mass of anhydrous
.
Mass of anhydrous
= 12.6 g
Molar mass of
= 125.9 g/mol
No. of mol of anhydrous
= 
so,
0.1 mol of
have 0.4 mol of water
1 mol of
will have = 
Hence, no. of water molecules associated to each molecule of
= 4
Answer:
Increasing its mass to twice its original value
Explanation:
Pls mark me brainliest