Answer:
B)−6,942 J
/mol
Explanation:
At constant temperature and pressure, you cand define the change in Gibbs free energy, ΔG, as:
ΔG = ΔH - TΔS
Where ΔH is enthalpy, T absolute temperature and ΔS change in entropy.
Replacing (25°C = 273 + 25 = 298K; 25.45kJ/mol = 25450J/mol):
ΔG = ΔH - TΔS
ΔG = 25450J/mol - 298K×108.7J/molK
ΔG = -6942.6J/mol
Right solution is:
<h3>B)−6,942 J
/mol</h3>
The amount of W(OH)2 needed would be 448.126 g
<h3>Stoichiometric calculation</h3>
From the equation of the reaction:
W(OH)2 + 2 HCl → WCl2 + 2 H2O
The mole ratio of W(OH)2 to HCl is 1:2
Mole of 150g HCl = 150/36.461
= 4.11 moles
Equivalent mole of W(OH)2 = 4.11/2
= 2.06 moles
Mass of 2.06 moles W(OH)2 = 2.06 x 217.855
= 448.188g
More on stoichiometric calculations can be found here: brainly.com/question/8062886
Answer: In order to increase the rate of reaction between hydrochloric acid and sugar increase the concentration of hydrochloric acid to 2 M because greater concentration results in more collision between the reactants.
Explanation:
More is the concentration of reactant molecules more will be the number of collisions between their molecules. As a result, more readily the products will be formed.
Hence, for the given reaction when concentration of HCl is increased then there will be increase in the number of collisions between reactants.
Thus, we can conclude that in order to increase the rate of reaction between hydrochloric acid and sugar increase the concentration of hydrochloric acid to 2 M because greater concentration results in more collision between the reactants.
A. Potassium oxide
B. Calcium chloride
C. Magnesium nitride
D. Sodium hypochlorite
E. Potassium nitrate
Answer:
D = 5.3 g/mL
Explanation:
Density = Mass over Volume
D = m/V
Step 1: Define
D = unknown
m = 16 g
v = 3.0 mL
Step 2: Substitute and Evaluate
D = 16 g / 3.0 mL
D = 5.333333333 g/mL
Step 3: Simplify
We have 2 sig figs.
5.333333333 g/mL ≈ 5.3 g/mL