1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BARSIC [14]
3 years ago
8

A steam Rankine cycle operates between the pressure limits of 1500 psia in the boiler and 2 psia in the condenser. The turbine i

nlet temperature is 800°F. The turbine isentropic efficiency is 90 percent, the pump losses are negligible, and the cycle is sized to produce 2500 kW of power. Calculate the mass flow rate through the boiler, the power produced by the turbine, the rate of heat supply in the boiler, and the thermal efficiency.
Physics
1 answer:
AlladinOne [14]3 years ago
5 0

Answer:

a. Mass flow rate through the boiler = 5.462lbm/s

b. Power produced by the turbine = 2525.8kW

c. The rate of heat supply in the boiler = 6901.42Btu/s

d. Thermal efficiency of the cycle = 34.3%

Explanation:

In order to provide a solution, we must assume that ;

- The system is operating at a steady condition

- Kinetic and potential energy changes are negligible

Now from steam tables, we calculate specific volume v and enthalpy h as,

h_1 = 95.96Btu/lb (  h_1 = h_f at 2psia )

v_1 = 0.016238ft^3/lb ( v_1 = v_f at 2psia )

w_{p,in} = v_1(P_2-P_1) = 0.016238(1500-2) * \frac{1}{5.404} = 4.501 Btu/lb

w_p = h_2 - h_1\\h_2 = w_p+h_1=4.501+95.96=100.461Btu/lb

h_3 = 1364.0Btu/lb

s_3 = 1.5073Btu/lb.R

( at P_3 = 1500psia & T_3 = 800^0F )

P_4 = 2psia\\S_4 = S_3\\x_4S = \frac{S_4-S_f}{S_{fg}}=\frac{1.5073-0.1783}{1.7374}=0.765

( S_f & S_{fg} when pressure is 2psia)

h_4S = h_f+x_4S*h_{fg}=95.96+(0.765)(1021.0)=877.025Btu/lb

n_T= \frac{h_3-h_4}{h_3-h_4S}\\ h_4=h_3-n_T(h_3-h_4S)=1364.0-0.90(1364.0-877.025)=925.7Btu/lb

Therefore,

q_{in}=h_3-h_2=1364.0-100.461=1263.54Btu/lb\\q_{out}=h_4-h_1=925.7-95.96=829.74Btu/lb\\w_{net}=q_{in}-q_{out}=1263.54-829.74=433.8Btu/lb

To calculate the mass flow rate of steam in the cycle, we use the formula

W_{net}=mw_{net}\\m=\frac{W_{net}}{w_{net}} =\frac{2500}{433.8}=5.763*(\frac{0.94782Btu}{1Kj} )=5.462lb/s

where 1Kj = 0.947817 Btu

The power output and the rate of heat addition are calculated thus,

W_{T,out}=m(h_3-h_4)=(5.462lb/s)*(1364-925.7)Btu/lb*(\frac{1Kj}{0.94782Btu} )\\=5.462*438.3*1.055=2525.8KW

Q_{in}=mq_{in}=5.462(1263.54)=6901.46Btu/s

The thermal efficiency of the cycle can be found thus;

n_{th}=\frac{W_{net}}{Q_{in}} =\frac{2500}{6901.46}*(\frac{0.94782Btu}{1Kj} ) =0.343

= 34.3%

You might be interested in
A wave has a frequency of 15,500 Hz and a wavelength of 0.20 m. What is the
Hoochie [10]

Answer:

3100 m/s

Explanation:

The relationship between frequency and wavelength of a wave is given by the wave equation:

v=f\lambda

where

v is the speed of the wave

f is its frequency

\lambda is the wavelength

For the wave in this problem,

f = 15,500 Hz

\lambda=0.20 m

Therefore, the wave speed is

v=(15500)(0.20)=3100 m/s

4 0
3 years ago
A radio station's channel, such as 100.7 fm or 92.3 fm, is actually its frequency in megahertz (mhz), where 1mhz=106hz and 1hz=1
lapo4ka [179]
<span>In order to determine the wavelength, we use the wave equation:

speed = frequency * wavelength

speed of light c = 3 x 10</span>⁸<span> m/s

Frequency f = 104.1 MHz = 1.041 x 10</span>⁸ Hz<span>

c = f</span>λ
λ = c / f

λ = 3 x 10⁸ / 1.041 x 10⁸
λ = 2.88 meters

The wavelength of the waves is 2.88 meters.
5 0
3 years ago
How many times higher could an astronaut jump on the Moon than on Earth if his takeoff speed is the same in both locations (grav
JulsSmile [24]

Answer:

maximum height on moon is 6 times more than the maximum height on Earth

Explanation:

Let the Astronaut has its maximum speed by which he can jump is "v"

now for the maximum height that it can jump is given as

v_f^2 - v_i^2 = 2 aH

now from above equation we will have

0 - v^2 = 2(-g)H

now we have

H = \frac{v^2}{2g}

now if Astronaut jump on the surface of moon with same speed

then we know that the acceleration of gravity on surface of moon is 1/6 times the gravity on earth

so at surface of moon we have

0 - v^2 = 2(-g/6) H

now we have

H = \frac{6v^2}{2g}

so maximum height on moon is 6 times more than the maximum height on Earth

8 0
3 years ago
A machine which has an energy loss of 10% will have efficiency of​
larisa [96]

Answer:

90%

Explanation:

if you lose 10% of a 100 you get 90

6 0
2 years ago
What's the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmi
Murrr4er [49]

Complete Question:

The Voyager 1 spacecraft is now beyond the outer reaches of our solar system, but earthbound scientists still receive data from the spacecraft s 20-W radio transmitter. Voyager is expected to continue transmitting until about 2025, when it will be some 25 billion km from Earth.

What s the diameter of a dish antenna that will receive 10−20W of power from Voyager at this time? Assume that the radio transmitter on Voyager transmits equally in all directions(isotropically).  In fact, the antenna on Voyager focuses the signal in a beam aimed at the earth, so this problem over-estimates the size of the receiving dish needed.

Answer:

d = 2,236 m.

Explanation:

The received power on Earth, can be calculated as the product of the intensity (or power density) times the area that intercepts the power radiated.

As we assume that  the transmitter antenna is ominidirectional, power is spreading out over a sphere with a radius equal to the distance to the source.

So, we can get the power density as follows:

I = P /A = P / 4*π*r², where P = 20 W, and r= 25 billion km = 25*10¹² m.

⇒ I = 20 W / 4*π* (25*10¹²)² m²

The received power, is just the product of this value times the area of the receiver antenna, which we assumed be a circle of diameter d:

Pr = I. Ar =( 20W / 4*π*(25*10¹²)² m²) * π * (d²/4) = 10⁻²⁰ W

Simplifying common terms, we can solve for d:

d= √(16*(25)²*10⁴/20) = 2,236 m.

3 0
3 years ago
Other questions:
  • How did rutherford's experiment show that thomson's plum pudding model was incorrect?
    15·1 answer
  • Our Sun is all of the following EXCEPT ____.
    11·2 answers
  • What is the net force acting on a golf car travelling at a constiant speed of 5 mph?
    13·2 answers
  • Which are ways to improve the design of this experiment? Check all that apply.
    9·2 answers
  • Jason launches a model rocket with a mass of 2.0 kg from his spring-powered rocket launcher with a spring constant of 800 N/m. H
    8·1 answer
  • Ms. PB is pushing Mr. Rigney in a wheelchair with a force of 10 N East, while Mr. Rigney is using his arms to
    9·1 answer
  • A cannonball is fired horizontally from the top of a cliff. The cannon is at height H = 100 m above ground level, and the ball i
    5·1 answer
  • I need to fill the gaps
    6·1 answer
  • Please help I don't know what the answer is
    11·1 answer
  • Asymmetric dimethylarginine, endocan, pentraxin 3, serum amyloid A, soluble urokinase plasminogen activator receptor, total oxid
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!