Answer:
a. Mass flow rate through the boiler = 5.462lbm/s
b. Power produced by the turbine = 2525.8kW
c. The rate of heat supply in the boiler = 6901.42Btu/s
d. Thermal efficiency of the cycle = 34.3%
Explanation:
In order to provide a solution, we must assume that ;
- The system is operating at a steady condition
- Kinetic and potential energy changes are negligible
Now from steam tables, we calculate specific volume
and enthalpy
as,
(
at
)
(
at
)
![w_{p,in} = v_1(P_2-P_1) = 0.016238(1500-2) * \frac{1}{5.404} = 4.501 Btu/lb](https://tex.z-dn.net/?f=w_%7Bp%2Cin%7D%20%3D%20v_1%28P_2-P_1%29%20%3D%200.016238%281500-2%29%20%2A%20%5Cfrac%7B1%7D%7B5.404%7D%20%3D%204.501%20Btu%2Flb)
![w_p = h_2 - h_1\\h_2 = w_p+h_1=4.501+95.96=100.461Btu/lb](https://tex.z-dn.net/?f=w_p%20%3D%20h_2%20-%20h_1%5C%5Ch_2%20%3D%20w_p%2Bh_1%3D4.501%2B95.96%3D100.461Btu%2Flb)
![h_3 = 1364.0Btu/lb](https://tex.z-dn.net/?f=h_3%20%3D%201364.0Btu%2Flb)
( at
&
)
![P_4 = 2psia\\S_4 = S_3\\x_4S = \frac{S_4-S_f}{S_{fg}}=\frac{1.5073-0.1783}{1.7374}=0.765](https://tex.z-dn.net/?f=P_4%20%3D%202psia%5C%5CS_4%20%3D%20S_3%5C%5Cx_4S%20%3D%20%5Cfrac%7BS_4-S_f%7D%7BS_%7Bfg%7D%7D%3D%5Cfrac%7B1.5073-0.1783%7D%7B1.7374%7D%3D0.765)
(
&
when pressure is 2psia)
![h_4S = h_f+x_4S*h_{fg}=95.96+(0.765)(1021.0)=877.025Btu/lb](https://tex.z-dn.net/?f=h_4S%20%3D%20h_f%2Bx_4S%2Ah_%7Bfg%7D%3D95.96%2B%280.765%29%281021.0%29%3D877.025Btu%2Flb)
![n_T= \frac{h_3-h_4}{h_3-h_4S}\\ h_4=h_3-n_T(h_3-h_4S)=1364.0-0.90(1364.0-877.025)=925.7Btu/lb](https://tex.z-dn.net/?f=n_T%3D%20%5Cfrac%7Bh_3-h_4%7D%7Bh_3-h_4S%7D%5C%5C%20h_4%3Dh_3-n_T%28h_3-h_4S%29%3D1364.0-0.90%281364.0-877.025%29%3D925.7Btu%2Flb)
Therefore,
![q_{in}=h_3-h_2=1364.0-100.461=1263.54Btu/lb\\q_{out}=h_4-h_1=925.7-95.96=829.74Btu/lb\\w_{net}=q_{in}-q_{out}=1263.54-829.74=433.8Btu/lb](https://tex.z-dn.net/?f=q_%7Bin%7D%3Dh_3-h_2%3D1364.0-100.461%3D1263.54Btu%2Flb%5C%5Cq_%7Bout%7D%3Dh_4-h_1%3D925.7-95.96%3D829.74Btu%2Flb%5C%5Cw_%7Bnet%7D%3Dq_%7Bin%7D-q_%7Bout%7D%3D1263.54-829.74%3D433.8Btu%2Flb)
To calculate the mass flow rate of steam in the cycle, we use the formula
![W_{net}=mw_{net}\\m=\frac{W_{net}}{w_{net}} =\frac{2500}{433.8}=5.763*(\frac{0.94782Btu}{1Kj} )=5.462lb/s](https://tex.z-dn.net/?f=W_%7Bnet%7D%3Dmw_%7Bnet%7D%5C%5Cm%3D%5Cfrac%7BW_%7Bnet%7D%7D%7Bw_%7Bnet%7D%7D%20%3D%5Cfrac%7B2500%7D%7B433.8%7D%3D5.763%2A%28%5Cfrac%7B0.94782Btu%7D%7B1Kj%7D%20%29%3D5.462lb%2Fs)
where ![1Kj = 0.947817 Btu](https://tex.z-dn.net/?f=1Kj%20%3D%200.947817%20Btu)
The power output and the rate of heat addition are calculated thus,
![W_{T,out}=m(h_3-h_4)=(5.462lb/s)*(1364-925.7)Btu/lb*(\frac{1Kj}{0.94782Btu} )\\=5.462*438.3*1.055=2525.8KW](https://tex.z-dn.net/?f=W_%7BT%2Cout%7D%3Dm%28h_3-h_4%29%3D%285.462lb%2Fs%29%2A%281364-925.7%29Btu%2Flb%2A%28%5Cfrac%7B1Kj%7D%7B0.94782Btu%7D%20%29%5C%5C%3D5.462%2A438.3%2A1.055%3D2525.8KW)
![Q_{in}=mq_{in}=5.462(1263.54)=6901.46Btu/s](https://tex.z-dn.net/?f=Q_%7Bin%7D%3Dmq_%7Bin%7D%3D5.462%281263.54%29%3D6901.46Btu%2Fs)
The thermal efficiency of the cycle can be found thus;
![n_{th}=\frac{W_{net}}{Q_{in}} =\frac{2500}{6901.46}*(\frac{0.94782Btu}{1Kj} ) =0.343](https://tex.z-dn.net/?f=n_%7Bth%7D%3D%5Cfrac%7BW_%7Bnet%7D%7D%7BQ_%7Bin%7D%7D%20%3D%5Cfrac%7B2500%7D%7B6901.46%7D%2A%28%5Cfrac%7B0.94782Btu%7D%7B1Kj%7D%20%29%20%3D0.343)
= 34.3%