Answer:
Speed of the satellite V = 6.991 × 10³ m/s
Explanation:
Given:
Force F = 3,000N
Mass of satellite m = 500 kg
Mass of earth M = 5.97 × 10²⁴
Gravitational force G = 6.67 × 10⁻¹¹
Find:
Speed of the satellite.
Computation:
Radius r = √[GMm / F]
Radius r = √[(6.67 × 10⁻¹¹ )(5.97 × 10²⁴)(500) / (3,000)
Radius r = 8.146 × 10⁶ m
Speed of the satellite V = √rF / m
Speed of the satellite V = √(8.146 × 10⁶)(3,000) / 500
Speed of the satellite V = 6.991 × 10³ m/s
<span>92.96 million mi..........</span>
Answer:
25 seconds
Explanation:
Assuming the woman is accelerating at a constant rate of
from the initial velocity, u=4.20 m/s, to the final velocity, v=5.00 m/s.
Let she takes t seconds to cover the distance, s=115 m.
As acceleration, 

Now, from the equation of motion


[ from equation (i)]

seconds.
Hence, she takes 25 seconds to walk the distance.
Answer:
Systematic error can be corrected using calibration of the measurement instrument, while random error can be corrected using an average measurement from a set of measurements.
Explanation:
Random errors lead to fluctuations around the true value as a result of difficulty taking measurements, whereas systematic errors lead to predictable and consistent departures from the true value due to problems with the calibration of your equipment.
Systematic error can be corrected, by calibration of the measurement instrument. Calibration is simply a procedure where the result of measurement recorded by an instrument is compared with the measurement result of a standard value.
Random error can be corrected using an average measurement from a set of measurements or by Increasing sample size.
Answer:
2.5m
Explanation:
Torque is defined as the rotational effect of a force on a body.
The torque T for the maximum shear stress is given as 0.1 Nm
Frictional torque is the torque caused by a frictional force
The frictional torque F is given as 0.04 Nm/m
The maximum length of the shaft is thus given as
L = T / F
= 0.1/0.04
L= 2.5 m