Below are the choices that can be found elsewhere:
A. (4.9 × 10-14 newtons) · tan(30°)
<span>B. (4.9 × 10-14 newtons) · sin(30°) </span>
<span>C. (4.9 × 10-14 newtons) · cos(30°) </span>
<span>D. (4.9 × 10-14 newtons) · arctan(30°) </span>
<span>E. (4.9 × 10-14 newtons) · arccos(30°)
</span>
<span>Force is proportional to the angle made by the velocity with respect to the magnetic field. It is maximum when velocity is perpendicular to the magnetic field and minimum when the velocity is parallel to the magnetic field. It is proportional to sin of the angle. In this problem it will be proportional to sin(30)</span>
To solve this problem we will apply the concepts related to Newton's second law that relates force as the product between acceleration and mass. From there, we will get the acceleration. Finally, through the cinematic equations of motion we will find the time required by the object.
If the Force (F) is 42N on an object of mass (m) of 83000kg we have that the acceleration would be by Newton's second law.

Replacing,


The total speed change
we have that the value is 0.71m/s
If we know that acceleration is the change of speed in a fraction of time,

We have that,


Therefore the Rocket should be fired around to 1403.16s
Explanation:
Below is an attachment containing the solution.
Which amplitude of the following longitudinal waves has the greatest energy?
amplitude = 10 cm; wavelength = 6 cm; period = 4 seconds
Answer:
Polarizing angle, 
Given:
Critical angle, 
Solution:
Now, in Total Internal Reflection (TIR), the critical angle for cubic zirconia is given by:
(1)
where
= refractive index of zirconia
From eqn (1):


Now, the angle of polarization is given by:
tan
Therefore,
