Answer:
A. MA=force output/force input
Explanation:
mechanical advantage is the ratio of the load to the effort
Answer:The choke coil works because it can act as an inductor. When the current pass through will change as AC currents creates a magnetic field in the coil that works against that current. This is known as inductance and blocks most of the AC current from passing through.
Explanation:
4.Use Ohm’s Law to determine the resistance in a circuit if the voltage is 12.0 volts and the current is 4.0 amps.
A. 8.0 ohms B. 48 ohms C. 3.0 ohms D. 12 ohms
Ohm's law is V=IR, or I=V/R, or R=V/I. (I= current, V= voltage, R= resistance.) Let's plug in our variables: V=12.0, I=4.0, R=? into the equation R=V/I. 12.0/4.0=3.0, so the resistance is 3.0 ohms.
Answer:
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation when the ball reaches the highest point of its motion.
Explanation:
When a ball is thrown upward under the free fall action of gravity, it starts to loose its Kinetic Energy as it moves upward. As the ball moves in upward direction, its kinetic energy gradually converts into its potential energy. As a result the speed of the ball starts to decrease as it moves up. Therefore, at the highest point during its motion, the velocity of ball becomes zero and it stops at the highest point for a moment, and then it starts to fall back down, under the influence of gravitational force.
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation <u>when the ball reaches the highest point of its motion.</u>
Answer:
Essentially, your thumb is the main piece of your body that has saddle joints. The bones in your seats joint are in charge of moving forward and backward, side to side.
When all is said in done, the piece of the thumb joint that is subjected to extreme anxiety is that known as CMC joint or carpometacarpal joint. This joint is fundamentally shaped by the metacarpal bone and it explains with the trapezium bone of the wrist.
Explanation: