Answer:
domain - (-infinity,infinity)
range - (-infinity, 2]
axis of sym - x=-1
y int - (0,-1)
at what value (row 1) - (-1,2)
Step-by-step explanation:
domain is side to side, it never ends bc of the arrows
range is top to bottom, there is no bottom bc of the arrow, but it has a top at 2 (the value on the y axis)
the axis of sym is basically the line that runs through the vertex, it's where you could fold it in half and it would still match up
Check the picture below. so, that'd be the triangle's sides hmmm so let's use Heron's Area formula for it.
![~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{15}~,~\stackrel{y_2}{15}) ~\hfill a=\sqrt{[ 15- 10]^2 + [ 15- 5]^2} \\\\\\ ~\hfill \boxed{a=\sqrt{125}} \\\\\\ (\stackrel{x_1}{15}~,~\stackrel{y_1}{15})\qquad (\stackrel{x_2}{30}~,~\stackrel{y_2}{9}) ~\hfill b=\sqrt{[ 30- 15]^2 + [ 9- 15]^2} \\\\\\ ~\hfill \boxed{b=\sqrt{261}}](https://tex.z-dn.net/?f=~%5Chfill%20%5Cstackrel%7B%5Ctextit%7B%5Clarge%20distance%20between%202%20points%7D%7D%7Bd%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%7D~%5Chfill~%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B10%7D~%2C~%5Cstackrel%7By_1%7D%7B5%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B15%7D~%2C~%5Cstackrel%7By_2%7D%7B15%7D%29%20~%5Chfill%20a%3D%5Csqrt%7B%5B%2015-%2010%5D%5E2%20%2B%20%5B%2015-%205%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Ba%3D%5Csqrt%7B125%7D%7D%20%5C%5C%5C%5C%5C%5C%20%28%5Cstackrel%7Bx_1%7D%7B15%7D~%2C~%5Cstackrel%7By_1%7D%7B15%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B30%7D~%2C~%5Cstackrel%7By_2%7D%7B9%7D%29%20~%5Chfill%20b%3D%5Csqrt%7B%5B%2030-%2015%5D%5E2%20%2B%20%5B%209-%2015%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Bb%3D%5Csqrt%7B261%7D%7D)
![(\stackrel{x_1}{30}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{5}) ~\hfill c=\sqrt{[ 10- 30]^2 + [ 5- 9]^2} \\\\\\ ~\hfill \boxed{c=\sqrt{416}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%28%5Cstackrel%7Bx_1%7D%7B30%7D~%2C~%5Cstackrel%7By_1%7D%7B9%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B10%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%20~%5Chfill%20c%3D%5Csqrt%7B%5B%2010-%2030%5D%5E2%20%2B%20%5B%205-%209%5D%5E2%7D%20%5C%5C%5C%5C%5C%5C%20~%5Chfill%20%5Cboxed%7Bc%3D%5Csqrt%7B416%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{125}\\ b=\sqrt{261}\\ c=\sqrt{416}\\ s\approx 23.87 \end{cases} \\\\\\ A\approx\sqrt{23.87(23.87-\sqrt{125})(23.87-\sqrt{261})(23.87-\sqrt{416})}\implies \boxed{A\approx 90}](https://tex.z-dn.net/?f=%5Cqquad%20%5Ctextit%7BHeron%27s%20area%20formula%7D%20%5C%5C%5C%5C%20A%3D%5Csqrt%7Bs%28s-a%29%28s-b%29%28s-c%29%7D%5Cqquad%20%5Cbegin%7Bcases%7D%20s%3D%5Cfrac%7Ba%2Bb%2Bc%7D%7B2%7D%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D%5Csqrt%7B125%7D%5C%5C%20b%3D%5Csqrt%7B261%7D%5C%5C%20c%3D%5Csqrt%7B416%7D%5C%5C%20s%5Capprox%2023.87%20%5Cend%7Bcases%7D%20%5C%5C%5C%5C%5C%5C%20A%5Capprox%5Csqrt%7B23.87%2823.87-%5Csqrt%7B125%7D%29%2823.87-%5Csqrt%7B261%7D%29%2823.87-%5Csqrt%7B416%7D%29%7D%5Cimplies%20%5Cboxed%7BA%5Capprox%2090%7D)
Answer:
5 1/3 + 9 2/3
Step-by-step explanation:
A number minus a negative number will be the same thing as addition
The midpoint of 85 and 90 is 87
112,811 rounded to the nearest hundred thousand is 100,000