Answer:
-5m/s
Explanation:
Since
acceleration=final velocity-initial velocity/time
2.5m/s^2=20m/s- initial velocity/10s
2.5m/s^2×10s= 20m/s -initial velocity
25m/s=20m/s - initial velocity
Initial velocity=20m/s-25m/s
= -5m/s
Answer:
(a) 
(b) 
(c) 
Explanation:
(a) The total mechanical energy of the system is conserved.

(b) The conservation of energy states

(c) As explained in part (a) the total mechanical energy of the system is equal to the initial kinetic energy, since the potential energy of the system at that point is zero.

Answer:
1/4 λ film
Explanation:
Let L = total path length then L = 2 t where t is film thickness
There will be a 180 deg phase change at the air-film interface but no
phase change at the film-air interface
L = n * wavelength / 2 where n = 1, 3, 5, 7 etc
(the total path L must be an odd number of 1/2 wavelengths)
Or t = n * wavelength / 4 (the film must be an odd number
of 1/4 wavelengths thick)
1/4 λ film satisfies this condition
Note: Find the missing diagram in the attachment section.
Answer:
Variation
Explanation:
This explains variation because theres many different species in the question
Answer:
a=∆v/∆t
Explanation:
The definition of Acceleration is the change in velocity in a given time. So this means you first calculate ∆v (Change in velocity), and you calculate ∆t which is the time taken to apply that change in velocity. Then you find a= ∆v/∆t. This gives us the equation of Acceleration.